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rogress Report: Summ f work done under AFOSR nsorship during 82-

reambl

This report, documenting the progress made under AFOSR sponsorship (AFOSR-82-0299),
is a summary of the three yearly progress reports submitted to AFOSR, and also includes material
described verbally to the Program Manager, Dr. James McMichael, during our periodical meetings.
The research falls within the general area of "Turbulence, Turbulence Control and Drag Reduction'.
The progress made during the three year period 1982-85 can be classified under the following four
categories:

(1) Fundamental studies on turbulence dynamics

(2) Flow control studies

(3) Viscous drag reduction

(4) Miscellaneous.

Each of these areas will now be described briefly in the following sections; each section also
contains some general qualitative remarks.

ndamental i n_turbulen mi

The emphasis in this part work has been the examination of whether, and if so how, the
modern notions of dynamical systems, chaos and nonlinear systems can enhance our understanding
of turbulent flows in a way that we can use this improved understanding to predict better quantities
of direct interest in practical circumstances, such as mixing and drag. The strides made so far may
not be remarkable in an absolute sense, but we have definitely made some non-trivial progress.
When this work was begun, it was not fashionable within the fluid mechanics community (in fact,
some workers looked upon it rather unkindly), but many more groups are now engaged in similar
work. We think that turbulence is not chaos, and is more complex than the complex behavior
associated with simple maps (for instance), but that many tools employed for analyzing chaos can
be used profitably to gain a better understanding of turbulence. Furthermore, in spite of the protests
of some, we also believe that the canonical routes to chaos have some relevance to the manner in
which transition to turbulence occurs at least in some special circumstances.

Some idea of the work done can be had by the list of publications (including reports and
theses) that arose from it. We list them below, and discuss them briefly. Most publications are
enclosed, but not the theses and the interim reports (partly because they have already been mailed to
AFOSR at different times, and partly because they duplicate some of the published material).

The significance of this work is that it brings together the recent mathematical concepts from
nonlinear dynamics and some classical concerns in fluid mechanics. It is believed that this cross
fertilization will have significant impact on our understanding of turbulence in the next ten years (or
$0). The publications are: / ,-

a. K.R. Sreenivasan & P.J. Strykowski (1984) °
unconfined flows and chaotic dynamical systems”; In "Turbulent and chaotic phenomena in
fluids', pp. 191-196, North-Holland (ed. T.Tatsumi)

It was in this paper that the dimension of the attractor was first calculated from experimental
signals (more or less concurrently with others in the physics community who did similar
calculations in the Taylor-Couette flow). We indicated that the Ruelle-Takens scenario may hold
during transition to turbulence in coiled pipes. We have not pursued this flow much because of the
difficulty in obtaining purely periodic phenomena, but have pursued this line of enquiry in other
flows (see below). _

e
" b. K.R. Sreenivasan (1985) Transition and turbulence in fluid flows, and low-dimensional
chaog’s In 'Front)'ers of fluid mechanics', pp.41-67, Springer-Verlag (ed. S.H. Davis & J.L.
Lumley) col e
We showed that the points of view now developing from the understanding of chaotic
dynamical systems can be useful for interpreting the phenomena associated with transition to
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turbulence in wakes behind cylinders. This manuscript created some interest, and there are claims
that the windows of chaos and order observed in this paper were due to the aeroelastic coupling
between the flow and the cylinder. It is quite clear that aeroelastic coupling is a sufficient condition
for producing these windows of order and chaos, but that is not a necessary condition. Our present
view, based on a number of unpublished measurements including those on cylinder vibrations, is
that small three dimensionalities (invariably present) in the wake of a rigid cylinder will be enough
to produce the results obtained in this manuscript. Further work is in progress.

c¢. K.R. Sreenivasan (1986) 'Chaos in open flow svstems In 'Dimensions and
entropies’, pp 222-230, Springer-Verlag (ed. G. Mayer-Kress)

In this paper, we discussed the general difficulties associated with measurement of
dimensions and Lyapunov exponents in open flows, and presented trends with Reynolds number.
Flows examined were wakes, jets, mixing layers and flow through coiled pipes.

\
d. K.R. Sreenivasan & C. Meneveau (1986) 'The fractal facets of turbulence’ J. Fluid
Mech. 173, 357-386.

In this paper, we showed that there are various facets of turbulent flows that are fractal-like,
and measured by experiment the fractal dimensions of turbulent/non-turbulent interfaces,
iso-velocity surfaces, iso-dissipation surfaces, etc. Part of our contribution in this paper (and in
reference (c) above) is believed to be the rendering of some mathematical properties of strange sets
amenable to measurement, and the interpretation of these measured measurements in contexts of
fluid flows. In particular, we examined the following questions: (a) Is the turbulent/non-turbulent
interface a self-similar fractal, and (if so) what is its fractal dimension? Does this quantity differ
from one class of flows to another? Arc constant-property surfaces (such as the iso-velocity and
iso-concentration surfaces) in fully developed flows fractals? What are their fractal dimensions? (c)
Do dissipative structures in fully developed turbulence form a fractal set? What is the fractal
dimension of this set? Answers to these questions shed some light also on some long standing
questions in turbulence — for example, the growth of material lines in a turbulent environment. The
overwhelming conclusion turned out to be that several facets of turbulence can be described by
fractals, and that their fractal dimension can be measured. Currently, we are trying the explain our
findings in terms of the dynamics of turbulence, and examine the implications of these findings to
turbulent mixing.

v
e. K.R. Sreenivasan & R. Ramshankar (1986) "Transition intermittency in open flows, and
intermittency routes to chaos', Physica 23D, 241-258.

The intermittent transition to turbulence in open flows (mainly pipe flows) was examined in
this paper in the context of intermittency routes to chaos. Preliminary conclusions were that some
quantitative connections could be discerned, but that they were incomplete. In a similar manner,
connections with phase transition and other critical phenomena were also found to be imperfect.
Some measurements which we hope will be useful in developing alternative models describing the
essentials of the phenomena were described.

1Y

f. K.R. Sreenivasan, P.J. Strykowski & D.J. Ohnger (1987) 'Hopf bifurcation, Landau

gqggngn, and vortex shedding behind circular cylinders’, In 'Forum on unsteady flow
separation' of the ASME Transactions, pp. 1-13 (ed. K.N. Ghia).

In this paper, we have shown by measurement that the bifurcation accompanying the vortex
shedding behind circular cylinders is of the Hopf type, and that the Landau equation (with
constants possibly depending on the spatial position) describes the post-critical behavior quite
accurately. We determine typical Landau constants. Finally, we have examined the sense in which
absolute instability is relevant to the vortex shedding problem.

z, EI!!\V gﬂ"“:!!l |g§g;||gh

This has been a central issue of our research, but a number of things resulting from it have
remained unpublished to-date, although they are at various stages of publication now. The bulk of
the work can be found in two Ph.D.theses, whose titles and abstracts are given below.
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ntrol of Absolutely an nvectively Un le Shear Flows'

The control of the absolutely unstable wake flow and the convectively unstable boundary
layer is investigated. The control (1.e., suppression) of disturbances in the wake and the boundary
layer is achieved through different means, because the flows are governed by different types of
instabilities. For instance, vortex shedding behind circular cylinders can be suppressed (over a
limited range of Reynolds number) by the proper placement of a second smaller cylinder in the
near-wake of the main shedding cylinder. The control is new and quite dramatic, and is a
consequence of the wake being absolutely unstable. Control in the boundary layer is achieved by
acting on the diswrbances directly because the flow is dominated by the convective instablity. In the
boundary layer, control is successfully applied to Tollmien-Schlichting waves and narrow
band-passed random waves using the wave superposition principle. The control is achieved by
using a novel technique, namely suction and blowing, by which disturbances are produced and
subsequently controlled.

A publication that has resulted from this work is:

P.J. Strykowski & K.R. Sreenivasan (1985) 'The contro] of transitional flows' ATAA
Paper -85-0559, Presented at the AIAA conference on Shear Flow Control, Boulder.

Two other papers are expected to be prepared on the basis of this thesis.

b)S.Ragh

The purpose of the present research is to demonstrate experimentally a set of methods for the
active control of combustion and acoustically coupled fluid dynamic instabilities. These methods
are based on the theoretical understanding of the interaction of mass, momentum or energy sources
with a disturbance in the system. The disturbance could be linear or nonlinear and either vortical,
acoustic or in the entropy mode. It has been shown that periodic addition of mass, momentum or
energy can result in either the amplification or the decay of the energy in a periodic disturbance
depending on the phase in which this addition occurs. Successful control has been achieved in
several cases of fluid dynamic and combustion instability ranging from laboratory scale
experiments to an operational, large combustion tunnel.

The method of heat addition was used to succesfully control oscillations in a Rijke tube, a
whistler nozzle, resonance in a pipe set up by loud speaker, and a turbulent pipe flow with
superposed acoustic resonance. It was found that more control heat is necessary to suppress
oscillations in a large background of turbulent noise. Drag forces generated by fine screens was
used to suppress the oscillations in a whistler nozzle. A feedback mechanism was designed to
oscillate the screens in the proper phase to achieve the desired control action. The resonance in a
pipe set up by a loud speaker was suppressed by periodic mass addition using a feedback control
system. Finally, a combination of screens and heating coils was used to control oscillations in a
large combustion tunnel. The methods of control explored in this work are independent of the
source of instability, and hence have a broad range of applications in real systems.

One publication that has resulted from this work is:

KR Srceniv?lsan, BT Chu & S. Raghu (1987) 'Th

T Lof ilati .
i n , ATAA Paper-85-0540, Presented at the AIAA meeting
on Shear Flow Control, Boulder.

Three more publications that will follow are:

B.T. Chu, K.R. Sreenivasan & S. Raghu (1987) ‘On the control of combustion instability',

to appear in Progress in Aerospace Sciences.
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S. Raghu & K.R. Sreenivasan (1987) 'Control of acoustically coupled combustion and fluid

dynamic instabilities’, AIAA Paper -87-2690 to be presented in the 11th Aeroacoustic
Conference in Sunnyvale, CA, Oct. 19-21.

S. Raghu, R.P. Bradley & W.M. Roquemore (1987) ‘Control of combustion il
to be presented at the NATO Advanced Study Institute in a Conference on Instrumentation
for Combustion and Flow, September 14-25, 1987, Portugal.

Vi s Drag i

Again, the bulk of this work has remained unpublished, but a majority of the work has been
summarized in the following Ph.D. thesis.

a) T, B, Lynn (1987): 'Manipulation of the Structure of a Turbulent Boundary Layer'

The manipulation of a turbulent boundary layer for the purpose of net drag reduction is an
attractive topic for research, because even modest success will result in large energy savings. The
focus of this work is passive manipulation, one of the simplest manipulation techniques. The most
promising manipulator to-date is the so-called BLADE device, consisting of two thin ribbons or
foils suspended in the outer portion of the boundary layer. BLADE devices were devised and
researched first at the Illinois Institute of Technology (IIT) and NASA Langely. When we began
this research, there was significant controversy over the magnitude of net drag reduction possible
(20% reported by the IIT group) and the maximum skin friction reduction obtainable (50% reported
by the IIT group).

Accurate local skin-friction have been made using sublayer fences in a perturbed boundary
layer. By comparing our direct measurements with those obtained by indirect methods, we have
determined that the degree of drag reduction depends on the method used to calculate the combined
devise drag and skin friction drag.

Using auto and two-point correlation measurements as well as space-time correlations, we
investigated the effects of BLADE devices on the turbulent structures in the boundary layer,
comparing them with wire devices which are known not to produce a net reduction in drag. The
sustained effects of the BLADE devices were, in all length scale measurements, stronger and longer
lasting than those of the wire devices. The space-time correlation revealed that the most significant
effect of the BLADE device was on the large structure (the dominant structure in the outer region of
the boundary layer). In contrast, the wire manipulator had no effect on the large structures. The
BLADE's alteration of the large structure was evident in the marked difference in the development
of the wakes downstream of the two devices.

We have also investigated inner layer devices consisting of sublayer wires. The results from
both the inner and outer layer manipulations suggest the effective alteration of a turbulent boundary
layer depends on the scaling of the device. The dominant turbulent structure in the region of interest
dictates the proper scaling of the device.

b) In addition, a Master's degree work by Mr. Mark Lee partly on the effect of a rotating
cylinder immersed in the turbulent boundary layer should be mentioned. This work showed the
importance for drag reduction of lifting objects immersed in the turbulent boundary layer. This is a
matter of ongoing research, and will be reported elsewhere.

¢) Some of our work on the so-called BLADE manipulators was summarized also in an
invited talk (with R. Narasimha) at the AIAA Conference on Shear Flow Control, Boulder.
The talk was prepared in the form of the following report:

" R. Narasimha & K.R. Sreenivasan (1987); !

Flat plate drag reduction by turbulence
manipulation’, Report Number 86FM4, Department of Aerospace Engineering, Indian Institute of
Science, Bangalore.
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In the course of work we did several years ago, it became evident that the zero normal
velocity boundary condition, imposed in the interior of a turbulent flow, will have a srong effect on
the flow evolution. To test these ideas, we set up several experiments in grid turbulence, but have
pursued them only sporadically, the reason being that our resources were limited, and we had to
make a choice on priorities.

For the same reason, we have also not written up on our pipe flow work, related to the
effects of initial conditions on the evolution of the flow.

However, two pieces of research in this category have been written up. These are enclosed,
and a brief description is included below.

a) K.R. Sreenivasan (1983): '‘Some studies in non-simple pipe flows', Invited paper in
Trans. Inst. Engineers Australia, vol. MES, pp.200-208.

A variety of phenomena occurs in pipe flows, especially if we stray away from straight
circular pipes of uniform crosssection. This paper illustrates a few of the complexities arising from
the relatively simple changes in geometry, namely, the sudden expansion and the coiling of the
circular pipe. In particular, the phenomena examined are relaminarization, large amplitude
self-excited oscillations in sudden expansions, transition to turbulene, and retransition from the
relaminarized state to a turbulent one.

b) K.R. Sreenivasan (1984): ‘On_the scaling of the turbulence energy dissipation rate’,
Phys. Fluids, 27, 1048-1051.

From an examination of all data to-date on the dissipation of turbulent energy in grid
turbulence, it was concluded that, for square-mesh configuration, the ratio of the time scale
characteristic of dissipation rate to that characteristic of energy-containing eddies is a constant
independent of Reynolds number, for microscale Reynolds numbers in excess of about 50.
Insufficient data available for other grid configurations suggest a possibility that the ratio could
assume different numerical values for different configurations. The persistent effect of initial
cogd(i:tions on the time scale ratio is further illustrated by reference to the jet-grid data of Gad-el-Hak
and Corrsin.

Concluding remarks

A part of progress achieved during this period has been of qualitative nature, that is, of the
type that has helped us to pose the right questions for further inquiry. In fact, some of the work
now being done by us, which seems to hold more promise, has had its roots in the exploratory
work done under AFOSR sponsorship during the period under consideration. In this sense, the
significance of the work to be described below lies beyond the specifics. We are happy to
acknowledge this indebtedness to AFOSR.

It may not be out of place to note that, as a secondary outcome of the AFOSR support, three
Ph.D.'s and two M.S.'s were produced at Yale. One of the Ph.D.'s (Paul Strykowski) has
accepted a professorial position at Brown, the second (Ted Lynn) a post-doctoral position at
DFVLR in Berlin, while the third is a post-doctoral fellow at Yale. One of the two Master's degree
recepients (Mark Lee) is currently employed at the Wright Patterson Air Force Base, while the
second (David Kyle) has taken a break from studies to pursue a different career.
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TURBULENCE AND CHAOTIC PHENOMENA IN FLUIDS

T. Tatsumi (editor)

Elsevier Science Publishers B.V. (North-Holland) 191
© [UTAM, 1984

ON ANALOGIES BETWEEN TURBULENCE IN OPEN FLOWS
AND CHAOTIC DYNAMICAL SYSTEMS

K.R. Sreenivasan and P.J. Strykowski

Mason Laboratory, Yale University, New Haven, CT 06520

We briefly study turbulence in open flow systems in the
context of concepts developed in studies of chaotic dy-
namical systems. Although several flows have been ex-
amined, particular attention will be focussed on the
question of transition to turbulence in coiled pipes;
some degree of correspondence with the Ruelle-Takens-
Newhouse route to chaos is indicated. Using the
Grassberger-Procaccia algorithm, the dimension of the
attractor for velocity signals during and immediately
after transition to turbulence has been computed. Our
results, such as they are, indicate that the dimension
is relatively low. Brief comments will be made on the
difficulties of computing the dimension, as well as on
the relevance of strange-attractor theory to fully-
developed turbulence.

INTRODUCTION

Recent studies of the dynamics of nonlinear systems with finite (and small) num-
ber of degrees of freedom have produced profound results with probable implica-
tions to the very notion of chaos — for example, in kinetic theory of gases in
the context of the Boltzmann equation — but the interest of fluid dynamicists in
thegse studies stems primarily from the notion of genericity, that is, the expec-
tation that the qualitative properties of the Navier-Stokes equations are shared
also by these simpler systems. A related important (and, to our knowledge, as
yet untested) expectation is that turbulence, at least not too far away from
transition, behaves like a strange-attractor. Without going into details, we may
restate the above supposition to mean that turbulence has a manageably small num-
ber of 'dynamically significant' degrees of freedom, despite the overwhelming
complexity it displays, or that one may be able to extract a finite-dimensional
projection out of an infinite-dimensional phase space.

As we know today, three distinct 'scenarios' of chaos have been indentified; more
will no doubt be discovered. 1In the first scenario, chaos sets in abruptly fol-
lowing very few (most probably, three) Hopf bifurcations [1,2]. In the second,
the onset of chaos occurs via an infinite cascade of period doubling [3,4,5] with
certain well-defined universal characteristics. The third, less-studied, route
envisages chaos through gradual merging of decreasingly intermittent chaotic
regions [6]. Obviously, these scenarios of chaos have at least qualitative re-
semblence to trangition to turbulence in one or the other of the fluid flows; con-
siderable work [ 7-10] in the last few years has shown that the correspondence is
more than superficial in highly constrained 'closed flow systems', that is, fluid
flows which are totally confined within a closed boundary (for example, the nar-
row-gap Taylor-Couette flow, or convection in a finite box of small dimension).
Although it appears certain that many aspects of transition, even in confined
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Figure 1. Time traces (duration 15 ms) and power spectral densities of the fluctu-
ating velocity u on the pipe centerline of a coiled pipe; pipe diameter = 3.18 mm,
coil radius = 42 mm. Same gain for all cases. Note that the spectral ordinates do
not all have the same scale. In general, open systems are characterized by the

presence of sizeable noise in the initial conditions, which is why we have chosen

to plot the power on a linear scale.

power spectra.
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194 K.R. Sreenivasan, P.J. Strykowski

fractal dimension D, an adaptation of the Hausdorff Jdimension. (The fraccal di-
mension mav be viewed as a measure of the information necessary to specify the
location of a fractal set. For classical cases with self-similarity, it coin-
cides with the usual notion of dimension.) Calculating D using box-counting al-~
gorithms is not practical if D > 2 (see [13]), as is surely the case for turbu-
lence (see below). Another dimension v, related to the fractal dimension

D(. £ D), as well as the information-theoretic entropy, has been proposed [14].
If v is the n-dimensional vector in time domain,one computes first the quantity
C(r) given by

N
lim 1 y
c(r) = = Z: Hir = [v,=-v. )}, (1
’ N2 gyl iNI -3 )

where v, = y(it'), 7' being the sampling interval, and H i{s the Heaviside step
function. For r not too large, it can be shown that C(r) - rY. Grassberger &
Procaccia [ 14} have shown that v = D for several chaotic attractors commonly dis-
cussed in the literature on dynamical systems, and have argued that, where it is
smaller than D, v is in fact the more appropriate quantity to consider. We shall
not discuss this further but only note that D is a quantity related to geometry,
while v has a probablistic content in it. In our computations of v, we used real-
time data of the axial velocity component to construct a multidimensional vector
using the delay coordinates (u., u v «... U, 4 +v.) with increasing values of
d, and evaluated v as indicated abotz; T is af ggEééIal multiple of T'. Initial-
ly, v increases with d but settles down eventually. It is this asymptotic value
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Figure z. The quantity log2 C(r) vs log2 r, v in arbitrary units. Re = 6625.
Differ.nt curves correspond to different’d. From left to right, d = 1, 5 *°
15, 20, 25, 30, 20, 50 and 70.
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of v that is of interest to us. If v is relatively small, the concept of strange
attractors may be very useful in turbulence; otherwise, it is hard to assess its
significance.

As a check on our computational procedure, we may note that v was found to be 1
for a sine wave and 0.63 for a Cantor set, as expected. Since a purely random
signal, such as the output of a white-noise generator, has a space-filling attrac~
tor, v =d for all d.

Figure 2 shows several curves of log C(r) vs log r, computed with increasing val~-
ues of d, from the velocity data for Re = 6625 just after the onset of the broad-
band spectral behavior. Typically, these curves have a linear region; the level-
ling off of the curves for large r is the result of the finiteness of the attrac- 4
tor, while deviation from linearity towards the very low end of the curves arises : N
from resolution problems. The slope of the linear region increases with d ini-
tially but appears to settle down to a constant beyond a certain d. This can be
seen more directly from figure 3. The asymptotic velue of v 1s around 6.
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6 Figure 3: The slope v of the
straight regions of curves in

= figure 2, vs the dimension of
the phase space, d. The asymp~
A totic value is around 6.
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The data presented in figures 2 and 3 are typical of our computations,which extend
to Reynolds numbers on either side of 6625. However, they are not sufficiently
systematic at this point to be included here as conclusive results. This is so
chiefly because we have not yet made the various sensitivity tescts on v. First,
before the signal is digitized, some low-pass filtering 1is necessary; we have not
investigated the effect of varying this cut-off on v, We have also not investi-
gated very thoroughly the effect of varying T om v. Typically, however, this lat-
ter effect 1is not significant over a fairly wide range of 7. With these reserv-
ations noted, we may mention that, for Re < 6625, the value of v is less than 6,
while being a rather strongly iacreasing function of Re at higher Re; in fact, at
the highest Reynolds number of our computations, we have not yet seen v settle
down even for d as large as 100. (Our initial results presented at the meeting in
Kyoto were necessarily at lower Reynolds numbers than 6625.)

DISCUSSION AND CONCLUSIONS

The results of the previous two sections represent only a small part of a largely
unyielding investigation. In relation to transition and the scenarios of chaos,
our experience is that none of the above-mentioned routes to chaos occurs during
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transition to turbulence in open systems like ‘ets or wakes. While it is of course
possible that more than one of the above scenar.os operzte simultaneously, it looks
certain that turbulence, unless constrained severely, does not behave like a simple
dynamical system. On the other hand, we would like to make a specific mention of
the fact that our initial experience with coiled pipes was disappointing too; it
was only after some modifications of the flow were made, primarily in the form of

a smoother inlet to the upstream straight section, that we could observe the evol-
ution discussed earlier. Can we then make the sweeping generallization that, by
making 'appropriate’ changes to the flow, perhaps by way of restricting initial
conditions to a suitable (but unknown) 'basin of attraction', we can nudge trans-
ition to follow some well-defined scenario of chaos?

What specifically has our work shown in relation to fully developed, or, at least,
'nascent' turbulence? While much work needs to be done, it suggests that, at least
at Reynolds numbers not too far above the transition value, the attractor for tur-
bulent signals is relatively low-dimensional. It may thus juscify attempts at
extracting fer the Navier-Stokes equations a finite-dimensional projection out of
the seemingly infinite-dimensional phase space. We should, however, note that the
dynamical systems approach will at best represent a small part of the total pict-
ure in turbulence unless the spatial chaos and order, as well as the relation
between these latter characteristics and temporal behavior, are discussed.
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Transition and Turbulence in Fluid Flows and
Low-Dimensional Chaos

K.R. Sreenivasan

Department of Mechanical Engineering, Yale University
New Haven, CT 06520, USA

Recent studies of the dynamics of low-dimensional nonlinear systems with chaotic
solutions have produced very interesting and profound results with several implica-
tions in many disciplines dealing with nonlinear equations. However, the interest of
fluid dynamicists in these studies stems primarily from the expectation that they
will help us understand better the onset as well as dynamics of turbulence in fluid
flows. At this time, much of this expectation remains untested, especially in 'open'
or unconfined fluid flows. This work is aimed at filling some of this gap.
Measurements made in the wake of a circular cylinder, chiefly in the Reynolds
number range of about 30-10°, have been analyzed to show aspects of similarity with
low-dimensional chaotic dynamical systems. In particular, {t is shown that the int-
tial stages of transition to turbulence are characterized by narrow windows .of chaos
interspersed between regions of order. The route to the first appearance of chaos
is much like that envisaged by Ruelle & Takens; with further increase in Reynolds
number, chaos disappears and a return to three-frequency quasiperiodicity occurs.
This is followed in turn by the reappearance of chaos, a return to four-frequency
quasiperiodicity, reappearance of chaos yet again, and 80 on. We have observed sev-
eral alternations between order and chaos below a Reynolds number of about 200, and
suspect that many more exist even in the higher Reynolds number region. Each window
of chaos 18 associated with a near-discontinuity in the vortex shedding frequency
and the rotation number, as well as a dip in the amplitude of the vortex shedding
mode, It is further shown that the dimension of the attractor constructed using time
delays from the measured velocity signals is truly representative of the number of
degrees of freedom in the ordered states interspersed between windows of chaos; it is
fractional within the windows of chaos, and is higher than those in the neighbouring
regions of order. Our measurements suggest that the dimenaion is no more than about
20 even st a moderately high Reynolds number of 10, and that it probably settles
down at about that value.

1. Introduction
a. General remarks

The principal parameter of incompressible viscous flows, in situations free of
body forces, is the Reynolds number, Re. Observations show that for given (fixed or
time-independent) boundary conditions (and external forces if applicable), the flow
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is unique and steady for Re < Rect, where Recr is a certain critical value of Re;
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this is the steady laminar motion. As Re increases, the fluid motion may first be-

come periodic, quasiperiodic, and 'eventually' chaotic. (Chaos is defined better in

section 3 and in the appendix, but we shall also loosely use the word to designate

v v T T ww

a state in which the details of motion are not reproducible.) This chaotic state is f de

not necessarily turbulence as generally understood — and we shall discuss this short-

ly — but it is believed that one attains the turbulent state if the Reynolds number

I (AT X

is taken to a sufficiently high value. The goal of the stability theory is to under-

2ol

stand how the evolution from the laminar to the turbulent state occurs, while tur-

vy Y VYR

bulence theories aim at unearthing and predicting the mysteries of the (fully) tur- . The

bulent state itself.

It is generally believed that the key to both these problems lies in the Navier- Newhouse, Ru
Hopf b

The wor:«

Ve

Stokes (NS) equations, and that no additional hypotheses of fundamental nature are af

required for describing either the onset of turbulence or its dynamics. Much effort

has thus been spent on mastering the NS equations. However, the difficulties, both

AR R

analytical and computational (at high enough Reynolds numbers), remain intimidating.
In the recent past, claims have been made that autonomous dynamical systems
with small number of degrees of freedom, typified by

db

i L
dc * E(bi' 61), (1.1)

UMV QDY 1.8

where the b1 characterize the state of the system (the so-called 'state variables'),

i is a small integer, and €, are the so-called control parameters (analogous to Re ie

i
in the NS equations), help us towards attaining both the goals mentioned above. It
is to a discussion of aspects of these claims, via an example of fluid flow behind

circular cylinders, that this paper is devoted.

b. Remarks on degrees of freedom, genericity, and spatial chaos
Several questions arise immediately. One natural question concerns the rele-
vance to fluid flows of low-dimensional dynamical systems. To give some meaning to

the concept of degrees of freedom in fluid flows, let us approximate the velocity

(and external force) conditions, this number is zero. If Re increases just past
42
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[+]
vector uj appearing in the NS equations as kox
uj - :E: aj(g;:)e S~ (3 =1,2,%, (1.2) rsti
k
where the wave number vector k 13 an element of a discrete (finite or infinite) set.
The NS equations can then be written formally as c
da, (k;t)
3 " F(ai; Re), 1 = 1,2,....N (large). (1.3)
The number of the coefficients a which, for given boundary conditions for the fluid
flow, are capable of variation in time can now be called the degrees of freedom of ran i
the fluid flow governed by the NS equations (to within the approximation implied in 1
(1.2) and (1.3)). Since the laminar flow is uniquely specified by the boundary er
ul
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Recr. only a few degrees of freedom are excited, and hence it appears that, at least

in the positive neighbourhood of Recr (to be called transcritical region henceforth),
consideration of these few degrees of freedom is adequate.

An interesting hypothesis (which we shall examine in this paper) is that the
number of degrees of freedom (not necessarily in the sense described above) remains
small even in (certain type of) high Reynolds number turbulence.

Assuming that the number of degrees of freedom excited in the transcritical re-
gion is indeed small, we must ask whether the behavior in this transcritical region
does not depend on the broad nature of the right hand side of equations (1.1) and
(1.3). The most often cited justification for the belief that this dependence is in
some sense of secondary importance comes from the work of Ruelle & Takens [l] and
Newhouse, Ruelle & Takens [2] which indicates that chaos sets in abruptly following
a few Hopf bifurcations, and that this behavior is 'generic' or 'typical'.

The words 'generic’ and 'gemericity' find their frequent use in the literature
on dynamical systems, and so, it is perhaps useful to discuss the concept briefly.
Ruelle & Takens maxe this concept quite specific for the vector fields they were
considering, but we shall be content with a rather loose qualitative descriptien.
Consider as an erzwmle, a class of functions possessing continuous derivatives up to
a certain order, and satisfying differential equations of the type (1.1). Proper-
ties of this class of functions which are the rule and not the exception, and which
do not depend on the precise nature of the right hand side of (1.1), are called ge-
neric. The conclusions of Ruelle & Takens strictly hold for ar idealized mathemat-
ical system, and whether the concept of genericity is powerful enough to embrace fluid
systems is not clear. One should attempt to answer this question by looking at the
specific form of F in (1.3) and/or by observing the actual bifurcations in experi-
ments on laminar-turbulent transition.

Even if the concept of genericity does hold for fluid flows, it is not obvious
that interesting nongeneric phenomena do not occur. To make this notion specific,
let us consider the following rather far-fetched example. Suppose we link (as in our
example above) genericity to the existence of velocity fields possessing continuous
derivatives of a certain order. Those generic properties may be irrelevant to a turb-
ulent boundary layer since one cannot exclude the possibility that at some moment
during bursting near the wall (a key event sustaining turbulence production) this
smoothness condition is destroyed in spite of viscosity. It is therefore sensible to
keep in mind that nongeneric behavior is neither uninteresting nor unlikely, espe-
cially when conditions such as configurational symmetry, vicinity to wall, play an
important role in the evolution of the flow.

Finally, one must mention the predominant role played by spatial chaos (and
order!) in turbulent flows of fluids. An important characteristic of fluid turbu-

lence is random vorticity, whose presence necessarily implies that the velocity vec-

tor is a random function of position. Autonomous dynamical systems of the type (1.1),

on the other hand, do not contain any space information., While temporal chaos in

fluid turbulence may in some sense be symptomatic of spatial chaos, it is clear that
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autonomous dynamical systems have little to say directly about the latter, at least
at the current state of development.

c. 'Closed' and 'open' flow systems

Notwithstanding these remarks, it is necessary to note that several beautiful
experiments now exist in the Taylor~Couette flow (e.g., Refs. 3, 4 and 5) and the
convection box (e.g., Refs. 5 and 7) which have lent support to the notion that the
behavior of flufd flows in the transcritical region could be similar to that of low-
dimensional dynamical systems, This in itself is undoubtedly remarkable, but it should
be remembered that these two flows are special in the following sense. In all 'closed

flow' systems — of which the convection box and the Taylor-Couette flow are two pop-

Al .53 L AR % O LA ARG 4

ular examples — the boundary is fixed so that only certain class of eigenfunctions

.

can be selected by the system; this does not hold for another class of flows we may
call 'open flow systems' — for example, boundary layers, wakes, jets — in which the
flow boundaries are continuously changing with position. Thus, while in closed flow
systems each value of the control parameter (for example, the rotation speed of the
inner c¢cylinder in the Taylor-Couette problem) characterizes a given state of the flow
globally, this is not true of open systems. Consider as an example the near field of

a circular jet. For a given set of experimental conditions, the flow can be laminar

» 2 80 T 5 Y PRI R

at one location, tramsitional at another and turbulent at yet another (downstream)

Srs,

location. This usually sets up a strong coupling between different phenomena in dif-
ferent spatial positions in a way that is peculiar to the particular flow in question.
Secondly, the nature and influence of external disturbances (or the 'noise', or the
'background or freestream turbulence') is more delicate and difficult to ascertain

in open flows: the noise, which is partly a remnant of complex flow manipulation de-
vices and partly of the 'long range' pressure perturbations, is not 'structureless'
or 'white', no matter how well controlled. Finally, it is well known that closed flow
systems can be driven to different states by means of different start-up processes;
for example, different number of Taylor vortices can be observed in a Taylor-Couette
apparatus depending on different start-up accelerations [8]. This type of path-sen-
sitivity in a temporal sense does not apply to open systems, where the overriding

factor is the path-sensitivity in a spatial sense (i.e., the 'upstream influence').

d. Scope of the paper

On balance, all these considerations suggested to us that it is desirable to
look at some open flows to determine the extent to which dynamical systems can assist
us in our goals of understanding transition and turbulence in fluid flows. This is
the motivation for the work described in this paper, which is to be viewed more as a
progress report than as a complete account; obviously much more remains to be done.
Our approach 1is to select well-known flows and follow the bifurcations as closely as
possidble. (We reported some of our earlier work in pipe flows in [9] and wake work
in {10].) Surprisingly, while much work has been done in these flows in the past, an
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amazing amount of new information can scill be acquired that will facilitate clari-

fying the relation between low-dimensional chaotic systems and fluid flow transition
and turbulence.

looks for are often dictated by contemporary concerns.

2.

to discuss here only our wind tunnel experiments in two-dimensional wakes behind cir-
cular cylinders.
the vortex shedding value) to about 10".
and one of the suction type — were used.
aluminium tubes, stretched tightly across the width of the wind tunnels, were used
as wake generators.

experimental conditions are summarized in Table 1.

Table 1.

Experiments

Part of the reason for this {s undoubtedly that the details ome

Although we have conducted experiments in wakes, jets and pipe flows, we choose

The Reynolds number range covered is from about 30 (slightly below

The aspect ratio varied between about 70 and 2000.

The flow configuration and experimental conditions

b4

d

(um)
0.24
0.24
0.36
4.0

0.36

L Y

2000
2000
1330
170
70

stant temperature anemometer.
tube connected to a calibrated MKS Baratron with adequate resolution ( and an aver-
ager).
holder.

pover gspectral density of the streamwise velocity component, u,
nals were digitized at sufficiently high fiequency (60 kHz or more) to ensure that,

whenever the signal was periodic, at least 30 digitized points were contained in one

All velocity signals were obtained with a hot-wire operated on a

The hot-wire and the Pitot tube were mounted on a specially designed slim

Some of the data to be presented in this and later sections is in the form of

. Experimental conditions

Two wind tunnels — one of the blower type

Nylon threads, stainless steel wires and

v

_wake generator
.

-
— <}

aspect ratio wind tunnel characterfstics

suction type; turbulence
level = 0.2X at speeds

blower type; turbulence
level varied from 0.68%

0.06% at sneeds

DISA 55MO1 con-
The speed of the tunnel was monitored with a Pitot

- o

Nearly all the sig-
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period of the basic frequency (so that it was a good representation of the analog
signal). Further, the entire length of the signal (which contained at least 100 cy-
cles of the basic frequency) was Fourier transformed at once using the Cooley-Tukey
FFT algorithm. The overriding criterion was that the spectral resolution should be
as good as possible (here, between 0.5 Hz and 2 Hz compared with shedding frequen-
cies of the order of 2000 Hz or more) and that one must not miss any low frequency

modulations.

b. The background turbulence
We have worked with varying levels of background turbulence, and found that the
occurrence of different stages of transition reported here is in itself not terribly
sensitive to the turbulence level as long as it is not too high; larger turbulence
levels blur the distinction between different stages and alter the details somewhat
erratically. One should, however, strive to eliminate all strong discrete freauency
components in the background turbulence structure.

Figure la shows a typical power spectral density of u in the freestream at Re =
60. (The ordinate is the logarithm to base 10 of the power.) The 'noise' (though
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FIGURE 1: Normalized powe- (or frequency) spectrum of (a) noise of the instrumenta-

tion and digitizer, plue freestream disturbances, Re = 60; (b) instrumentation and
digitizer noise only with no flow.
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devoid of any discrete peaks) does not appear to be 'white' but has a much larger
low frequency component. Figure lb shows the power spectral density measured with
the flow completely shut off, but the hot-wire and other electronic instruments op-
erating the same way as before. It is :lear that the anomalously high low frequency
content is not representative of the f{iow itself, but of electronic and computer
noise. Allowance should thus be made or this fact in the interpretation of the

spectral data to follow.
3. Results from Spectral Measurements

a, Route to chaos: rhe first appearance

Figure 2 shows the logarithm (to base 10) of the normalized power spectral den- i
sity of u at a Reynolds number (based on the freestream velocity and the diameter
of the cylinder) of about 36, which is approximately the onset value for vortex shed-
ding. Notice that the instrumentation and other noise level i{s around 10", while
the pear 2I the spectrum (Zarked EL;, correspending to the basic vortex shedding fre-

quency behind the cylinder, is at round 107°"%, about 7% orders of magnitude higher

« e

than the noise level! The sharpness of the peak (as well as of the other peaks to

the right of fl which are the harmonics of fl) is excellent.

14

i : FIGURE 2: Normalized frequency spectrum of
u at Re ~ 36. Note that the power P is

' b 4L plotted on a logarithmic scale (to base 10).
Iy i The peak at f = 590 Hz corresponds to the

. - ; I vortex shedding, and the subsequent strong

I | ‘ i [ peaks above the noise level are simply har-
0 e 10 3000 oo 3o om0 Toos S8 oo monicsoffl.

! i &
|

-3

!

Freauency (Hz)

At a somewhat higher Reynolds number of 54, there appear a number of peaks in
the spectrum (figure 3a); as shown in the expanded version (figure 3b) all the peaks
can be identified precisely in terms of the interaction of the two frequencies — the
basic vortex shedding frequency fl and another incommensurate frequency fz.

At an Re = 66 the spectrum (figure 4) shows broadened peaks with no overwhelm-
ingly strong discrete components — quite a different situation from that of figures
2 and 3. One might say, in the language of dynamical systems, that chaos has set in!

The sequence of events leading to chaos are so far literally like that envisaged
in the Ruelle-Takens-Newhouse (RTN) picture of transition to chaos, and so, a brief
digression roughly describing this picture is quite useful. (The appendix is an in-

troduction to the basic terminology.) With increasing Re, the steady laminar motion
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FIGURE 3: (a) Normalized frequency spectrum of u at Re = 54. 1In (b), the frequency
range 0-2200 Hz is expanded. All significant peaks in (b) are simple combinations of

the vortex shedding frequency fl (corresponding to the most dominating peak), and an-

other incommensurate frequency fz. After satisfying ourselves that there are no sub-
harmonics of fl (and that 119.02 Hz is unrelated to the line frequency or spurious
oscillations of the cylinder) we have picked f2 by hypothesizing that the peaks near-
est fl must be f1 b3 fz. The value of f2 thus obtained accounts for every other sig-
nificant peak as shown in (b) — actually to 4 or 5 decimal places for reasons we do
not understand! At least part of the reason for the relatively low noise level (com-

pared with figure 2) {s the increased signal level.

loses stability and becomes periodic with frequency f1 (say); the power spectral den-
sity will have (as in figure 2) a peak at fl (and {ts harmonics), and the phase dia-
gram will show a limit cycle behavior. Loss of stablility of this new state yields
a quasiperiodic motion with two independent frequencies, f1 and (say) f2~ The spec-
tral density will now show fl' fz and various combinations mf1 ¢ nf2 (as in figures

3a, b), and the phase porirait will be a two-torus. Further increase in Reynolds
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number yields a quasiperiodic motion with three frequencies (three-torus). New-
house, Reulle & Takens [2) argue that even a weak nonlinear coupling (of a certain
variety!) among the three frequencies is likely to result in chaos or a strange at-
tractor (see appendix), one of whose symptoms is an increased broadband content (see

figure 4). This contrasts the classical picture of Landau, according to which turbu-

W
3
\
2
%

lence is the asymptotic state of increasingly higher order quasiperiodicities.

Phase diagrams provide complementary information on the sequence of events lead-
ing to chaos. To construct phase diagrams, it would seem that one would require the
measurement of N inderendent variables (in general, a hopeless task!), but embedding
theorems like those of Takens [11] justify the use of a single measured variable.

From the measured local velocity u(t) — for example — one constructs a d-dimensional

diagram from the vectors {U(ti), ule, # 1), ... u(ey + W@k, i =1, ..., 1

being a time delay whose precise value in a certain wide range seems to be immaterjal.

According to the embedding theorems, the phase diagrams constructed in the above man-

ner will have essentially the same properties as the one with N independent variables,

as long as d > 2N + 1 (although exceptions to this now commonly assumed philosophy

are not hard to concoct). In practice, d is increased by one at a time until the ;

*
properties of interest become independent of d.

2 M ’ } FIGURE 4: The first appearance of chaos
at Re = 66. The broadband nature implies
chaos; onset of chaos does not rule out

-\
Note: fl is the vortex shedding frequen

cy. At most another frequency can per- thg existence og s?ectral pe@ks. (Note:
“lhaps be discerned in the ssectrus. This does not signify some high order
‘ ; guasiperiodicity as dizension and entropy
o oo rys ey preeey noo  Calculations of section 4 show.)

Frequency (Hz)

Figures 5, 6 and 7 show respectively the plot of u(t1+ T) vs u(ci) at Re = 36,
54 and 66, and can be considered as projections of the phase dlagrams on s two~dimen-
sional plane. The limit cycle behavior at Re = 36 is evident, the scatter visible
in the figure being partly due to experimental noise (see figure 2) and partly due
tothe jitter in the signal. Further, a Poincaré section reveals no discernible
structure. The situation is thus basically periodic.

* About two years ago (October 1982) when we first started constructing phase dia-
grams in this manner, we were unaware of any Jiterature on embedding theorens,
but were guided solely by elementary ad-hoe considerations.
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At Re = 34, although the projection of the phase diagram is complicated in ap~
pearance®(figure 6a), a Poincaré section (figure 6b) yields a limit cycle, reinfor-
cing the fact that only two degrees of freedom are present. On the other hand, not
only is the projection of the phase diagram at Re = 66 complex (figure 7), but also
its Poincaré sections (not shown), no matter how defined. This, as well as the frac-
tional dimension of the attractor (see section 4a) show that the signal is indeed
chaotic.

(As equally valuable measures of chaos, one could evaluate the Lyapunov exponent

(characterising the exponential divergence of nearby trajectories) or the Kolmogorov

entropy {(which, for typical systems, equals the sum of positive Lyapunov exponents).
Limitations of various kinds have prevented us from measuring the Lyapunov exponent
— such measurements for a Taylor-Couette flow have been made by Brandstiter et al.
{S) — but we do discuss some entropy measurements in section 4d.) ‘Y
This progression towards chaos — underlying the possible presence of a strange
attractor — proceeds much like that proposed by Newhouse, Ruelle & Takens [2]. It '
is thus extraordinary that the 'generic' behavior indicated by Ruelle & Takens for an IR -
idealized mathematical system should have a nontrivial bearing on a rather complex
tluid dynamical system!
It should be noted that few would feel comfortable in designating as turbulent
the sigrnal we have recognized as chaotic. Clearly, to the extent that a turbulent

flow must possess spatial randomness, we cannot say much of value as to whether the

flow at Re = 66 18 turbulent or not without a global survey of the flow field at this

Reynolds number. Further, if one defines turbulence as a high Reynolds number phe-
nomenon (as is often done!), it is tautologically true that the signal does not re-
present turbulence. Further, a look at the signal (figure 8) would prevent someone
with an everyday familiarity with high Reynolds number turbulence from accepting it

v =

Note that the trajectory resides most often in the upper right quadrant, but only *
rarely strays away into the lower left quadrant. This behavior in the phase plane
can be related to the finite skewness of the signal.
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as turbulent. Nevertheless, we would like to suggest that the signal shown in fig-
ure B is indeed random (for example, in terms of algorithmic complexity required to
specify it [12])with a well-defined probability density (see figure 9; for a compar-
ison with similar data at 'large' Reynolds numbers in the far wake, see Thomas [13]).
What this means is that even atlow enough Reynolds numbers, the interaction of only
a  few degrees of freedom leads to randomness! It is also pertinent to point out
that at least in some respects the signal of figure 8 resembles a narrow band pass
filtered turbulent signal at high Reynolds numbers. (Perhaps the word 'preturbu-
lence' also used commonly in dynamical systems literature, is sufficiently useful to

designate the signal such as the one shown in figure 8, and its dynamics.)

b. Chaos and its aftermaths

No qualitative change occurs between Re = 66 and about 71. Soon thereafter the
system becomes reordered. For example, the spectral density at Re = 76 shows (essen-
tially) nothing but discrete peaks again (figure 10a). These peaks, shown in detail
in figure 10b, can all be identified with great precision as arising from the inter-
action of three irrational frequencies. (That there are definitely three independent
frequencies can also be seen from Poincaré sections (not shown here) and the dimen-
sion of the attractor discussed in section 4b). After a small increase in Reynolds
number to about 81, one can see the onset of the broadband spectral content (figure

11), and we may consider chaos to have set in again!
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in the accuracy of this statement comes also from dimension calculations (section 4).
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The system reorders itself around an Re of about 90, and we have discussed else-

where [10] that this reordered state is quasiperiodic with four frequencies. (That
this is che case will be demonstrated also by dimension measurements in section 4d.) ;
Chaos sets in again at an Re = 140, followed by yet another reordering around an Re
= 143. In fact, this sequence of return to chaos and reordering continues for much
higher Reynolds numbers although it becomes progressively more difficult with in- )

creasing Re to distinguish experimentally between the two states.
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Two related points of importance emerge. First, there .o exist quasiperiodic
motions with three or four independent Ifrequenvies; just like Landau's quasiperiodi-
cities, the Ruelle-Takens picture of transition is also not the whole story. Second,
transition to turbulence (at least in the temporal sense) is characterized by regions
of chaos interspersed between regions of relative order. Each of these deserves at

least a brief discussion.

c. Note on quasiperiodicities with more than two frequencies

We have shown that the route to the lowest Reynolds number chaos occurs in our
experiments precisely as postulated in the RTN picture of transition. On the other
hand, our experiments also show that quasiperiodicities with three (and possibly
four) frequencies do exist. This type of disagreement with the RIN scheme has been
noted earlier in the Taylor-Couette flow [l4] and the convection problem [15]. It
is thus pertinent to inquire whether there are (in some sense) exceptional conditions
to be satisfied for the RTN scheme to hold. Greborgi et al. [16], who address this
question in a specific numerical experiment, suggest that the three frequency quasi-
periodicity is indeed quite likely to occur in practice, and that the special pertur-
bation required to destroy this state (as in the RTN scheme) is unlikely. Haken [17])
discusses this issue at some length and concludes that if the frequencies possess a
certain kind of irrationality with respect to each other (or, more precisely, the
so-called Kolmogorov - Arnold - Moser condition holds), bifurcation from a two-torus
toa three-~torus is possible. Both these discussions are strictly relevant to systems
with no externally imposed noise (or fluctuations), a condition that does not strict-
ly obtain in experiments (especially open systems). Our own experience is that the
precise nature of even small amounts of noise (some of which is controllable in our
wind tunnels and some of which is not!) has an influence on the evolution of the
system (for a brief discussion of this influence, see subsection 3e). It is not
hard to visualize that in our experiments the detailed conditions of intrinsic noise
itself could have altered from before to after the first occurrence of chaos. Clear-

ly, this is an area for further work, both experimentally and theoretically.

d. Windows of order and chaos

Figure 12 summarizes the changes occurring in the low end of the Reynolds num-
ber range we have considered. The shaded regions indicate windows of chaos, and the
question marks indicate the uncertainty and difficulty in quantifying what we believe
are reordered states.

At least two questions arise: What is the mechanism that permits the reordering
of a chaotic state? What determines the length and location of the windows of chaos?
Our understanding of these matters is rather limited, but even within these limits,
some comments seem called for, Let us consider the first question now, and relegate
the second one to the next subsection. The observed alternation between chaos and

order hasg been known to occur in several low-dimensional dynamical systems; for ex-
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FIGURE 12: Window of chaos and order

ample, Lorenz equations {18], and spherical pendulum [19}/. In these systems, the
occurrence of reordering is independent of zxzermal noise. The numerical experiments
of Matsumoto & Ysuda (20] show that chaotic orbits could be unstable to external
noise, and noise addition to deterministic chaos (i.e., chaos characteristic of de-
terministic dynamical systems) yields an ordered state in some cases. They specifi-
cally consider the so-called Belousov-Zhabotinskii (BZ) reaction and some variants
of the logistic model. Roux et al. [21] find windows of chaos and order in their
experiments on the BZ reaction.

In experiments on open systems, it is hard to ascertain whether the return to
order is tied intimacely to external noise or the increased degrees of freedom asso-
ciated with the appearance of chaos itself. 1In any case, the analogy between this
situation and increased eddy viscosity in turbulent flows appears to be more than
superficial: addition of high frequency modes results in a lowering of an effective
Reynolds number and increased stability of the flow.

Though we have not made detailed spectral measurements at higher Reynolds num-
bers, it is our contention that the succession of order and chaos in a wake continues '
indefinitely even at very high Reynolds numbers (with the caution that order must .
now be interpreted to mean spectral sharpening). Roshko [22] pointed out several
years ago that order reappears in the Reynolds number range of 10°®. More recently,
the fluctuating lift force measurements of Schewe {23) on a clrcular cylinder showed
that the spectral density of the lift coefficient was broad at Re = 3.7x10° (upper
end of transition) and became increasingly narrow until, at Re = 7.1x10%, it was
quite sharp, rather like a narrow-band-pass filtered signal. Although the fluctua-
ting lift force can at best be related to the squared fluctuating velocity filtered
via the transfer function corresponding to the response of the circular cylinder, its

behavior is nevertheless indicative of the flow itself in the vicinity of the cylinder. '

e. The vortex shedding frequency and windows of chaos
Consider now the variation of the vortex shedding frequency E1 with Reynolds
number (figure 13). The frequency does not vary monotonically with Re but shows sev-
eral more or less distinct breaks. Such breaks have been noted before [24,25,26],

and perhaps most convincingly demonstrated in a beautiful experiment by Friehe [27].
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vorte Friehe varied the Reynolds number continuously at a small rate and obtained on an

logéce o con- x-y plotter the frequency-Re variation directly. Although the appearance of the
\cidence
i1strated n

breaks has been disputed {28}, our own data, presented here and elsewhere [10], sup-
port the conclusion that discontinuities do indeed appear.

Our interest here is in pointing out that the occurrence of these breaks coin-
cides with the windows of chaos. To establish the connection better, we may consider
in figure 14 the details of the break marked A in figure 13. Just upstream of the
break, the spectral density is quite ordered (four-frequency quasiperiodicity) while

it 1s broadband until the end of the break region coinciding with the upper end of

the window of chacs; to the extent we can ascertain, the frequency spectrum shows a ‘,
reordering immediately after the break.

The data shown by crosses in figures 13 and 14 were all obtained from one ex- o8
perimental run. In a repeat of the experiment the following day (for example) we %
found the same general features, except that chaos set in at different Reynolds num- {?
bers; the windows of chaos were also of different widths. The filled circle in fig- p

ure 14 was ohtained in a second series of experiments. It is seen that this point
falls below the first set of data at the same Re, but it falls on the backward extra-

polation of the line corresponding to the reordered state (Re > 143) in the first 14

.

set. It is hard to tell the differences between conditions in the two experiments

without extensive documentation, but there are reasons to believe that the second

g

experiment was conducted in a somewhat nuisier environment. We thus speculate that

4 gy

the location as well as the widths of the windows of chaos are to some extent deter-

mined by noise characteristics — in a way that is not well understood at present.

It is interesting to note from rigure 14 that the ratio lefl (the so-called
rotation number), where fz is the second largest independent frequency, changes its ¢

value abruptly across the narrow windows of chaos. Figure 15 is a plot of the rota-

tion number with Re. It is seen that the number changes abruptly across all the win-

dows of chaos, but only slowly within regions of order. :'
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f. The amplitude of the vortex shedding mode and chaos

Stnce reordering is associated with the reemergence of stronger spectral peaks,
it is natural to expect that there must be some relation between the amplitudes of the
various modes and the occurrence of order and chaos. Figure 16 shows the amplitude of
the vortex shedding mode (or the fl frequency) as a function of velocity. (The ampli-
tude Al is expressed as a fraction of the freestream velocity U, but is given here to
an arbitrary scale.) It is clear that O indicating order coincides with a local peak
in Al' C indicating the onset of chaos coincides with a local minimum, and, finally,
RO indicating reordering coincides with the reappearance of a peak. Except for the

first time that reordering occurs, every successive reordering is associated with a
general lowering of the amplitude of the vortex shedding mode.

0.15

0.10

Ay

FIGURE 16: The amplitude of the vortex shed-
ding mode as a function of Re. O is order,

C chaos and RO is reordering; within a window
of chaos, O and RO may in general indicate
difterent states of order.
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4. Results from the Dimension of the Attractor

a. The dimension

It 1s clearly worth inquiring whether there is any property of the attractor
that successfully describes in some way the many subtle changes that occur in the
frequency spectra and the related properties discussed in section 3. It appears
that there indeed 1is such a quantity, namely the dimension of the attractor. Loose-
ly speaking, the dimension of the attractor is related to the number of degrees of
freedom — and hence its importance. The concept of the dimension {3 highlighted in
studies of dynamical systems, and we may briefly digress here to discuss its meaning
before presenting results from our measurements. It should be pointed out that, a-
part from our own earlier measurements of the dimension for turbulence attractors
[9,10], such measurements have been made by others in the Taylor-Couette flow [5)
and in the convection cell [29].

Let us consider an attractor (constructed as already discussed in section 3)from

a measured temporal signal u(t) that is embedded in a (large) d-dimensional phase

space. Let N(e) be the number of d-dimensional cubes of linear dimension € required

to cover ‘he attractor to an accuracy €. Obviously, making € smaller renders N larger,
but 1f the limiting quantity
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exists, it will be called the dimension of the attractor. An Iimportant characteris-
tic of a strange atzractor is that D is small even though d is large. We should be
interested in knowing whether transitional and turbulent signals have this property.
To see what the dimension means, let us write (4.1) as
NGey - T (4.2)
that is, if one specifies D and the accuracy € to which we need to determine the at-
tractor, we automatically know the number of cubes required to cover the attractor.
The only missing information will now be the position of the cubes in the phase space.

Thus, D can be considered as a measure of how much more information is required in
order to specify the attractor completely; the larger the value of D, the larger is
this missing information.

In general, the dimension D, as defined in (4.1), {s fractional for strange at-
tractors, and it has been called the fractal dimension by Mandelbrot [30) who has ‘
contributed a lot to our understanding of the quantity. As defined in (4.1), D is a

geometric property of the attractor, and does not take into account the fact that a

. - —

typical trajectory may visit some region of the phase space more frequently than
others. Several measures, taking this probability into account, have been defined
~ and are believed to be closely related to the dynamical properties of the attrac-

tor. The most well-known among them are:

(a) the pointwise dimension

(b) the Grassberger-Proccacia dimension.

If the attractor is uniform, that is, every region in the phase space is as likely
to be visited by the trajectory as every other, then the above two measures equal D
defined by (4.1). Otherwise, they are generally smaller than D.
Let SE(x) be a sphere of radius € centered about a point x on the attractor, '
and let u be the probability measure on the attractor. Then, the pointwise dimen-
sion is defined [J1]
iim 198 u[Sc(x)l
€*0 log €

or Wis 0] - o

dp(x) (4.3)

(4.4)
Grassberger & Procaccia {32] have Jdefined another measure v which is related to
the dimension of the attractor, as well as the entropy (see section 4d). The pro- ‘

cedure for computing v is as follows:

(i) Obtain the correlation gum C(¢) from:

N
|3 1
C(e) = N*“: N? 2 Hle- Iui - uj|] (4.5)
t=3=1
1%]
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» where H is the Heaviside step function and u, - uj is difference in the two vector
;. positions Yy and Ej on the phase space. Basically, what C does is to consider a win~ i
? dow of size €, and start a clock that ticks each time the difference [u v

~1i

.

- Ej] lies
within the box of size €. Thus, one essentially has

iim 1

S
H
é ClE) = o w2 (number of patrs of points (i,j) with ;91 BRI e} T4
Det v
é’ (11) Obtain v from the relation {32} Vg I
-y 2 N~
p Cle) ~ ¢ as w0 (4.6) I SO D,
3 ! 1 ~
In practice, not all components of u are known for constructing the phase space, [ S Y.
t but perhaps only one component, say ug As we discussed in section }, one constructs [ X -
a d-dimensional 'phase space' using delay coordinates { N
(“m“i" up (e +), ooy, um(ti+(d—1)T)), i=1, ...,k e :"
where, again, T is some interval which is neither too small nor too large and k is \Not >
large (in principle, infinity!). Since one does not a priori know Vv, one constructs ’:
several 'phase spaces' of increasingly large value of d and evaluates v for each of
them; v will first increase with d and eventually asymptote to a constant indepen- o
dent of d. This asymptotic value of v is of interest to us as a measure of the di- :;
mension of the strange attractor. 54, W
We have computed both dp and v as described above, using the streamwise velo- 4 {;:
city fluctuations u up to an Re of 10“, and the delay coordinates. Our confidence Re f= 91 wher ‘¢
in the numerical values of these measures of dimension is very good when they are - { Thus, tc
less than about 5 or 6, but becomes increasingly shaky at higher values. However, the attractc:a?
we do believe that they are reasonable, judging from their repeatability and the sev- : ;'
eral precautions we have taken (such as taking the proper limit as €+o and using, in : i‘
a couple of cases, double precision arithmetic in our computations). It would be g ﬂ‘
interesting and useful to evaluate the dimension at high Reynolds numbers, but such
calculations are likely to be of uncertain value (unless perhaps some carefully se- ,
lected combination of experimental and computational conditions obtains): with {n- g
creasing Re, the newly excited degrees of freedom can be expected to be of smaller > :
and smaller scales, and to properly accommodate them in the dimension calculations :
requires that one must in practice look at increasingly smaller values of € (see e- f
quation 4.6). Such efforts will very soon be frustrated by instrumentation noise
and digitizer resolution problems. alva *
b. Data for Re < 100 :
It is convenient to consider first the data for Re < 100 (figure 17). Concentra- :5
ting on the data in the ordered statesonly, we may conclude the following. At Re = )
36, where there {s only one independent degree of freedom (corresponding to the peri- r N

odic vortex shedding) — see figures 2 and 5 — the dimension of the attractor turns ly; furpfler ;\

Landaujb Lt F\
% 5
&

out to be about 1, When only two frequencies are present (figures 3 and 6) at Re =
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FIGURE 17: Variation ot the dimensiun of the attractor with respect to Reynolds
numbers. Note that the dimension is about | when there is only vortex shedding (Re =
36), about 2 when there are only 2 frequencies (Re = 54), about 3 when there are 23

z

frequencies (Re = 76), abuut « when there are 4 frequencies, The dimension jumps
to higher noninteger values in the winduws of chaos.

54, the dimension is about 2. At Re = 76 where there are three dominant frequencies
(figure 10}, the dimension i{s three to within experimental uncertainty. Lastly, at
Re = 91 where there are four frequencies present, the calculated v is very close to
4. Thus, to within computational uncertainties, {t is seen that the dimension of
the attractor is a reasonable representation of the number of degrees of freedom.
Now getting back to measurements in the windows of chaos, it 1is clear that the
first appearance of chaos at Re = 66 is characterized by a jump in the dimension (to
about 4.4 from 2 characteristic of the two-frequency quasiperfodicity), followed by
a return to a value of 3 in the region of three-frequency quasiperiodicity. Similar-
ly, the dimension of the attractor in the second chaotic window is about 4.8. As we
discussed earlier, the dimension of the attractor in the chaotic windows is a frac-

tion.

c. Higher Reynolds number data

Figure 18 shows the results of the dimension calculations up to an Re of about
10“. Both v and dp increase to about 20 or so at an Re of 10“. although the increase
is not always monotonic. In fact, our calculations seem to suggest that the dimen-
sion settles down to about a value of 20!

If 1t is true that the dimension of the attractor retains, even at high Reynolds
nupbers, its meaning as an indicator of the number of dynamically significant degrees
of freedom, common wisdom tells us that the dimension of the attractor should gen-
erally increagse with Re. In contrast, the dimension does not increase continuous~
ly; further, {ts value is far lower than Reg/h. whi.h Is the classical estimate (see

Landau & Lifshitz [33])for the number of degrees of freedom in a turbulent flow. It
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may be that the constancy of the dimension at higher Re is simply an artifact of re-
solution and computational problems, but if the resuit is genuine instead, {t should

provide an incentive for a suitable reformulation of 'turbulence problem’.

d. The Kolmogorov entropy

The Kolmogorov entropy has the property that it is positive for a chaotic sig-
nal, zero for ordered signals and infinite for a random signal with a space filling
attractor. As already mentioned, there are conjectures that the entropy equals the
sum of positive Lyapunov exponents, and hence, unlike the dimension D, is a dynamic
measure of unpredictability of the motion.

Suppose the d-dimensional phase space housing the attractor is partitioned into
boxes of size cd. Let p(il, 12. . td) be the joint probability of finding u at
time t = T in box 11. u at time t = 2T in box 12. seeee, Uoat time t = dT in box id'
The Kolmogorov entropy is then defined [34] as

Lim Rm 2im 1
K = = oo (oo dow 47 z Piyv. .t )in plip, . iy). (4.7)

11""id ar

Grassberger & Procaccia [35) have defined a quantity KZ which is close to K and fur-
] ther has the property that K; > 0 is a sufficient condition fur chaos. Without going

into too many details, we follow [35] and note that it can be computed by first ob-

1 taining C(e) as in Eq.(4.5) in section 4a for various d, and forming the ratio

(o)
tn S, (4.8)

7
Coer™

- f—

K2'd(c) -

Rl

where Cd indicates C for dimension d. In the iimict,

Lim
- Kz,d(E) - K
€+0

Table 2 gives K; for Re = 66 and 81 within the first two windows of chaos.

. lencef from che
For comparison, the table also lists K, for the Hénon map from [35]. €
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Tabie 4: The Kolmogurov entropy
Signal _;7 B
u at Re = 66 ~ 0.22
u at Re = 81 = 0.24

The Hénon map G, 325 © 0.02

5. Discussion of Results

'we nave shown that sever .l Yeatures at otransition to turbulence behind circular
cvlinders are in essenti:l agreemer? with the behavior of low-dimensional dynamical
systems. we omphisiZe thit many letulis discussed above in the near-wake region hold
als> at argund x 2 < 37, although less Zonspicucusly.

Dne particularly imprrcant feature »f rhis work is the discovery of windows of

chaos interspersed between regions ol oruer: these iatter regions are three and four-
irequency quasiperi.dizities in the 1w Reynnlds number range up to about 140 fpossi~
bly even higher';. Not all observatiins we have made can be understcod within the
present framework of chaos and dynamical systems, but we find it amazing that the
dynamics of fluid motion which we believe are particularly governed by the NS equa-
tions should be at all represented by extremely simple systems. One aspect of this
work is the fine resolution (in Reynolds number, frequency domain, as well as in the
phase space) with which measurements have been made. It seems to ug that even finer
resolution, especially within the windows of chaos and regions bordering them, will
perhaps disclose even more interesting aspects.

We have shown that, during early stages of transition, a strong connection (spec-
ulated previously, but never shown to be true conclusively) exists between the dimen-
sion of the attractor and the degrees of freedom as inferred from power spectral den-
sities. Provided this interpretation is true also in windows of chaos and (moderate-
ly) high Reynolds number turbulence, our results suggest that the degrees of freedom
are not too many even up to Reynolds number of the order of 10*. Our numerical cal-
culations based on Schewe's data lead us to expect that the dimension of the attrac-
tor, as computed according to (4.4) and (4.5), is not high even at higher Reynolds
numbers corresponding to the fully turbulent state (Re = 10%). If the attractor is
sufficiently low-dimensional, a clever projection of it can perhaps be used to our
advantage. (If the attractor dimension i{s even as high as 20, however, no matter
what projection one devises, it will perhaps look uniformly dark!) At this stage it
i3 not clear how one could use this information, but, without entering into a detailed
discussion, we may point out that it lends credence to concepts embodied in renormal-
ization group theory,slaving principle, or, closer to home, large eddy simulation
or orthogonal decomposition techniques,

We thus believe that there is much that we can learn about transition and turbu-

lence from chaos theories. In the immediate future, these theories provide a strong
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motivation for looking into newer aspects of fluid flow phenomena; discoveries of
close correspondence between fluid flows and low-dimensional chaotic dynamical sys-
tems will undoubtedly prove useful in the sense that the rich variety of results from
dynamical systems can be brought to bear on fluid flow transition and, perhaps, even
turbulence. In the long run, the hope is that they will help us in coming to grips
with the eternal problem of turbulence, namely, the enormous amount of 'information'
that seems to be available to us! Perhaps we can then model, even at high Reynolds
numbers, at least local behaviors by low-dimensional dynamical systems.

Do we then conclude that the key to the understanding of transition and turbu-
lence lies totally in low-dimensional dynamicsl systems? We think that such state-
ments are optimistic at best and misguided at the worst. Apart from the fact that
the spatial structure of turbulent flows, which is their single most important char-
actertistic, lies outside the scope of dynamical systems theories — at least as they
stand today — there {s a lot that they do not or, perhaps, cannot, tell: for example,
they do not tell us anything about the or{gin and physical structure of the various
bifurcations that can occur, or how the drag coefficient varies with Reynolds number.
To answer these and similar questions of practical i{nterest, we suspect that we have
to revert to the NS equations'

One final comment should be made. It would be useful to make a concurrent flow
visualization study and relate the var{ous findings reported here to the spatial char-

acteristics of the flow. It {s unfortunate that we cannot use much the extensive

flow visualization observations made by others (: r example, Gerrard [36]) because
the detatls from one experiment to annther 3. n.t precisely match.
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Appendix
Let bl' bz. e bn be the state varfables of the aystem (l1.1). In an n-dimen-
sional space spanned by bl, b2' N bn, each point determines the state of the sys-

tem completely at a given time, t. As ¢t evolves, we obtain a continuous sequence of
points which form the trajectory of the system. As t+=, the b"l need not go to in~
finity, but may terminate (in two dimensions) either at a node or a focus or on a

limit cycle or, in higher dimensions, on to a more complicated object. This object
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on which the trajectory terminates is called an attractor if all other trajectories
starting near the said trajectory converge to the same object as t+®. (That is, the
attractor is the limit set of a representative point in phase space. Thus, an attrac-
tor attracts all nearby trajectories.)

If the system is stable and steady the attractor is a point — 3 node if the mo-
tion is critically damped (figure Al) or a focus if the motion is damped but oscilla-
tory (figure A2). If the system executes a periodic motion, a limit cycle is obser-
ved in the phase plane (figure A3). Quasiperiodic motion with two incommensurate
frequencies results in a two-torus (see figure A4), with the entire surface of the

torus covered by the trajectory eventually. A projection of the torus on to a plane

& ”z‘
— - .<
t //’ ;:\' :
I FIGULRE Al: Stable node. (point :
attractor) f
i3
by
by, 5,
g \(ﬂ\ -
X szn‘-———_. .
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FICURE A2: Stable focus. (point
— attractor)
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FIGURE A3: Limit cycle.
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>t FIGURE A4: Two-torus. (perspective view)
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may have different shapes depending on the orientation of the plane, but it is clear
that a section of the torus, say, by the plane A in figure A4 (the Poincaré section)
will yield a limit cycle. To obtain such a section in practice, one has to intercept
the trajectory each time it crosses the plane (or 'sample' the system at the frequency
f1 and at fixed phase), and plot b, and by (say) corresponding to these periodically
sampled data. The phase portrait corresponding to the quasiperiodic motion with three
frequencies is a three-torus, and so on.

The attractor has been called a 'strange attractor' if (roughly speaking) it is
a complex surface repeatadly folded onto itself in such a manner that a line normal
to the surface intersects it in a Cantor set. That is, if sne successively magnifies
regions of this intersection which appear, at some level of resolution, to be er-ire-

ly "filled', one sees regions of 'emptiness' interspersed between regions of 'occupa-

tion'. One cannot test this property ol tne strange attractor directly if it is con-
structed from experimental data (because of noise and the finite resolution of the
instrumentation), and so, one uses severai ol its other properties tu determine its

occurrence. For example, any two neighboring trajectories on the strange attractor
will diverge exponentially apart for small t (the so-called sensitivity to initial
conditions, measured by positive Lyapunov exponents or the Kolmogorov entropy): the
so-called dimension of the attractor (see section 4) is generally a non-integer; the
spectral density of the temporal signal used to construct the attractor will have

broadband components orders of magnitude above the instrumentation and other noise

levels.
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M
. Chaos in Open Flow Systems
p
[ K.R. Sreenivasan
k Center for Applied Mechanics. Mason Laboratory, Yale University
X New Haven, CT 06520, USA
N .
n )
.
" We discuss briefly some aspects of 'open flow systems' in the context
b of deterministic chaos. This note is mostly a statement of the diffi- l;
b culties in characterizing such flows, especially at high Reynolds aum-
bers, by dynamical systems. Brief comments will be made on the frac-

tal geometry of turbulence.

1. Introduction

v

»

n

y One of the most fascinating phenomena in fluid mechanics is the trans-
g ition from a steady laminar state to a turbulent state. OQur concern
4

here is a brief discussion (in the context of deterministic chaos) of
this transition process (or processes), and of aspects of the fully
turbulent state itself. We shall concentrate entirely on ‘open flow
systems', or 'unconstrained' flows, e.g., wakes, jets, boundary 1layers,
¥ channel and pipe flows, etc.

as genuine dynamical systems. We recall from [1] that such flows
could behave in generically different ways from the 'closed flow sys-
tems'. In all closed flow systems the boundary i{s fixed so that only
certain class of eifgenfunctions can be selected by the system; this
does not hold for open flow systems in which the flow boundaries are
continuously changing with position. Thus, while in closed flow sys-
tems each value of the control parameter (for example, the rotation
speed of the inner cylinder in the Taylor-Couette problem) character-
1zes a glven state of the flow globally, this is not true of open sys-
tems. Consider as an example the near field of a circular jet. For a
glven set of experimental conditions, the flow can be laminar at one
location, transitional at another and turbulent at yet another (down-
stream) location. This usually sets up a strong coupling between dif-
v ferent phenomena {n different spatial positions in a way that is pecu-
h liar to the particular flow in question. Secondly, the nature and in-
r fluence of external disturbances (or the 'noise', or the 'background
or freestream turbulence') i{s more delicate and difficult to ascertain
ino open flows: the 'noise’, which {3 partly a remnant of complex flow
manipulation devf{ces upstream and partly of the 'long range' pressure
. perturbations, is not 'structureless' or 'white', no matter how well
[ controlled. Finally, it is well-known that closed flow systems can be

i It is not obvious in what sense one can think of open flow systems
i

driven to different states by means of different start-up processes;
for example, different number of Taylor vortices can be observed 1in a
Taylor-Couette apparatus depending on different start-up acceleratioas
{2]. This type of path-sensitivity in a temporal sense does not apply
to open systems, where the overriding factor is the path-sensitivity i
in a spatial sense (i.e., the ‘'upstream influence').

Thesa remarks notwithstanding, 1t has been shown in Refs. 1 and 3 "
that 1t is worthwhile examining transition {n open flow systems from ¥
the point of view of low-dimensional chaos. The usual way of esta-
blishing this connection {8 via the analysis of the time history of a
single dynamical variable such as a velocity component obtained at a
fixed (Eulerian) point in the flow [4)]. We should stress that this
procedure {s inadequate especially for the open flow systems. Two re-
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marks ought to suffice. First, since the dynamical instabilities in
open flows are most often convective jin nature, analysis of temporal
Zulerian quantities does not carry with it much information on the
evolution of the system. Deissler & Kaneko [5] have pointed out that
a flow which gives every appearance of being chaotic may nonetheless

have no positive Lyapunov <xponents in the Eulerian frame of reference.

Perhaps a more relevact wethod of characterizing the evolution of the
flow in terms of a dynamical system would be to use the Lagrangian
information obtained, say, by measuring the velocity of a flutd parti-
cle as it moves about in the flow. To say the least, accurate mea-
surements of this type are hard to make.

The second point to be made is that most open flow systems pos-
sess strong spatial Inhomogeneities in a direction normal to the flow.
(Indeed, these inhomogeneities are responsible for processes that
maintain the flows against viscous diss{pation.) For this reason, it
is a priori unclear to what extent the temporal information obtained
at one selected point fixed in the flow can represent the global dy-
namics. One might think that a simultaneous measurement (at a given
time or as time sequences) of a dynamic quantity such as velocity,
made at many spatial points in the flow, might solve this problem.
This i{s not so: one does not even know how to construct a dynamical
system from such empirical data.

It therefore appears worth enquiring explicitly whether, in open
flow systems, attractors constructed from Eulerian point measurements,
using the usual time delay techniques, are chaotic; that is, whether
they are characterized by low dimensions, and possess (at least!) one
positive Lyapunov exponent. This is done in sectiom 2. In section
3, we examine the variation with the flow Reynolds number of the di-
mension of the attractor, and comment briefly on the dimenston at
large Reynolds numbers. In section 4, brief remarks will be made on
two aspects of turbulence that can be ascribed fractal dimensions.

2. Chaotic attractors for open flows: low Reynolds numbers

Chaotic attractors are characterized by at least one positive
Lyapunov exponent and by relatively low dimensions that do not con-
tinously increase with the embedding dimension. We have made point
measurements of velocity signals {in several different flows and con-
structed attractors using the time delay technique; we have obtained
the correlation dimensfon v according to the Grassberger-Procaccla
algorithm [6], and the largest Lyapunov exponent according to the al-
gorithm given in Wolf et al. [7]. (Spurred by a talk that Harry
Swinney gave in Kyoto in 1983, we wrote versions of a program to cal-
culate the largest Lyapunov exponent, but have now switched over to
the method of Ref. 7.) Since both these procedures are now well-
known, we shall not describe them here.

In Table 1, we 1list some basic information for four flows. A
crucial factor in obtaining the correlation dimension {s the choice
of the optimum time delay r. We simply varied t over a wide range,
and used a t in the range where {ts precise value is not critical.
We show in Fig. 1 the correlation dimension as a functioa of <.
Clearly, too large a t will result in the increase of v.

Figure 2 shows the convergence with the number of iterates of the
largest Lyapunov exponent for the wake, calculated using an embedding
dimension of 6; other embedding dimensions yield essentially the same
asymptotic value, even though the f{nitial behaviors could be quite
different. It should be remarked that the dimension and the Lyapunov
exponents usually coanverge (for the calculations typified by Table 1)
relatively fast; total signal durations of the order of 2000t , where
T, is the zero-crossing time scale of the auto-correlation fuaction,

was found to be usually sufficient.
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Table 1: Typical data for low Reynolds number open flow systems

Flow Re=U°d/v Correlation Largest
dimension,v Lyapunov

exponent.k1

wake behind circular cylinder'® 67 2.6 J.n5 bits/orbit

axisymmetric jet (unexcited)? 1000 5.3 0.35 bits/orbit

axisymmetric jet (excited)® 1800 3.2 _

curved pipe"® 5625 6.0 0.50 bits/orbit

'd = diameter of the cylinder, = upstream flow speed; data were
obtained 10 diameters downs?ream, 1l diameter off-axis.

24 = diameter of the nozzle, U = nozzle exit velocity; data were ob-
tained in the potential core 2 diameters downstream of nozzle
exit.

*no Lyapunov exponent was computed because we lost the data sets
immediately after computing the dimension.

*d = pipe diamter, U = section average velocity; the data correspond
to the centerline of the pipe.

32 2.0

(bits/orbit)

[
2.2 j

: % . 0
t, sampling intervals

0 100 200

evolution time (ardb. units)

Fig. 1 The variation of the correlation dimension as a function of
the time delay t used to construct the attractor.

Fig. 2 Variatioa of the largest Lyapunov exponent with the evolution
time.

From many such calculations, we conclude that {f one coustructs
attractors using a single Eulerian dynamical quantity via time delay
techniques, such attractors do possess (at low Reynolds numbers)
characteristics of chaotic dynamics. Perhaps, Eulerian quantitfes dc¢
preserve some {nformation on the dynamical evolution, in some loose
sense akin to Poincaré sections!

Wwe shall remark that these calculations do not unequivocally esta-
blish that tubulence is chaotic (in the sense of extreme seansftivity
to initial conditions). Our findings could perhaps be interpreted
equally well {in terms of 'external noise amplification' in the syste: .
Much more work is needed before one can determine the extent to whica
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flow 0.25a from the inside surface 0.25a from the outside surtace .'.';
| i
I Fig. 3a Measurement stations for Fig. 3b Streamwise velocity pY.
i the curved pipe. Flow at the mea- fluctuations at several Reynolds
! surement stations is fully devel- numbers at position A (the right a
| oped. Configuration details can be set of signals, measured 0.25 o,
f found in [3}. radius from the outer wall) and v
) position B. E
L]
»
this last mentioned factor competes with the intrinsic sensitivity to ’
‘ initial conditions as the mechanism for the generation of turbulence.
We should also reiterate the variation with spatial position of the -
’ characteristics of the 'Eulerian attractors'. For the curved pipe, k‘
| Fig. 3 shows samples of streamwise velocity history at two spatial hf
’ locations (but at the same streamwise section in the so-called fully &~
/ developed region). Clearly, attractors constructed from signals at {t
|

these two different locations can be expected to have different dimen-
sions and spectra of Lyapunov exponents. For an Re of 6625, the data
are as shown in Table 2. At the least, these data suggest that the

-

f
{ interpretation of the dimension as an indicator of the dynamically q
} significant degrees of freedom of flow needs some qualification. W
‘ i
I
i Table 2: The spatial variation of the characteristics of the 'Eulerian ¢
attractors' at two different spatial positions in the same L
flow at the same streamwise location at the same Re. Data %4
are for curved pipe; details as in Fig. 3.
position A position B .
v Ap» bits/orbit v A,, bits/orbit I
1 ~
6.0 G.4 2.7 0.17 N
.\
>\
3. Dimension calculations at higher Reynolds numbers 0
If we persist with dimension calculations at higher Reynolds nauam- ﬂ:
bers — using the same technique, in spite of its shortcomings — they ':‘i
become uncertain because: W
(a) The aumber of data points required for convergence, and the
number of steps involved in dimension calculations go up; 3
(b) One cannot in general find a proper range of time delays over "
which the results are sensibly independent; :
(c) There is no guarantee that the dimension calculations asymp- Pﬂ
tote to constant values as the embedding dimension ingreases. A
t
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Fig. 4a The variation of the correlation dimension v with the embed-
ding dimension d. Re = 500, approximately 5 diameters down-~
stream of the cylinder. A space-filling attractor is
expected to have the behavior shown by the dashed line.

Fig. 4b The variation of the correlation dimension v with the embed-
d{ng dimension d. Re = 2000, approximately 5 dfameters
behind the cylinder. v = d line holds for a space-filling
attractor. The A's indicate the values of v computed for
the random noise from a commercial random noise generator.
Notice that the asymptotic value of v is definf{tely below
the noise data, although only by a small margin. The near-
ness of the noise data to the flow data shows why we cannot
place too much emphasis on high dimension computations.

®
?
n —= -
0.75 e_t
Re ,"’
v i0 \ -$
N 1"
»” 9
-~
-
[}
/./
Re

Fig. 5 The variation of the dimension with Reynolds number. Data
are for the wake of a circular cylinder.

Figures 4a and b 1{llustrate this last point; Fig. 4b is the upper
limit on the Reynolds number at which some credibility (already rathet
low!) can be ascribed to the dimension calculations. If we belleve
the numbers obtained from such calculations, we may deduce that a
power law relation like Re'’/* 1is not unlikely (Fig. 5).

It is worth mentioning that Constantin et al. [8] have placed th:
upper bound on the dimension of Navier-Stokes attractors to be
of order R*/*® (and higher if self-similarity in the Kolmogorov range
does not obtain!), where the Reynolds number R = u'L/v, u' being a
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root-mean-square velocity fluctuation,and L is an integral state of
turbulence. The precise relatfon between R and the Reynolds numbers
Re used in Table | depends on the flow, but ftt is clear that {f the
present finding of a 3/4 - power law {s true, it s of undoubted sig-
nificance in spite of our earlier reservations on the meaning of the
dimension obtained in this way.

Fully turbulent flows are characterized by temporal and spatial
chaos. Temporal dynamics is thus merely a part of the whole story;
this {n itself is hard to come to grips with, even if the dimension
were to increase 'only' according to a 3/4 power of the Reynolds num-
bers. Is there then any connection between real turbulent flows and
finite- (and low) dimensional dynamical models which one hopes one can
construct? (That, presumably, is the practical motivation for studies
of this type.) The answer would have been an unequivocal 'no' were
it not for the fact that some (perhaps strong?) spatial coherence ap~-
pears to exist at least in some classesof fully turbulent flows. One
might, in some way that remains unclear, be able to decompose the
motion {into two components, one of which consists of this coherent
element and the other {ts complement. One can then think of a low-
dimensional attractor characteri{zing the coherent motion, the attrac-
tor being made fuzzy by the small scale motion whose effect is to re-
duce the correlation. Unfortunately, it {s not clear whether this
loosely worded picture {8 consistent with facts.

Elementary tests of this hypothesis can be made {f one is able
to separate the lacoherent motion from the coherent part. This might
be possible, for example, by some kind of ensemble averaging methods
such as used in [9). The simplest (by no means the most correct) way
is to filter out linearly im the frequency domain the coherent motion
from the rest. To avoid many conceptual difficulties associated with
filtering as the technique for separating the coherent and incoherent
motions we choose a (relatively) high Reynolds number flow where the
coherent part {8 clearly contained within a narrow band of frequen-
clies; we then enquire whether the motion associated with this narrow
band {s low dimensional.

Figure 6a shows the streamwise velocity fluctuation in the wake
of a circular cylinder, measured about 2 diameters behind the
cylinder and a diameter off-axis; the flow Reynolds number of 10,000
is considered moderately high. Computing the dimension of the attrac-

1500 o
»0
L)
20
w o
[} 0
- - x0
Y | -
-
-x0 Y
-0 -0
[} 1 2 3 4 S 0 1 2 3 4 5
time (arbd., units) time (ard. untits)

©igs 6a,b: The total (unfiltered) and the coherent part respectively
of the streamwise velocity fluctuation f{n the wake of a
cylinder; Re = 10,000. Both the ordinate and abscissa
are arbitrary but the same in the two figures.
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tor constructed from this sfignal is doome? to be meaningless in view
of the remarks made earlier. (If the Re’’ " dependence is valid, the
extrapolated estimate for v {s of the order of 30!) We do know from
power spectral measurements that this signal has a peak at a frequency
f of about 550 Hz; this peak,corresponding to a Strouhal number fd/U

= 0.21, characterizes the coherent part of the motion. If we band-
pass filter this signal between, say, 500 and 600 Hz, the resulting
signature is given in Fig. 6b. Calculations show that the corres-

ponding attractor has a dimension of about 5.5!

It is appropriate to end this discussion with the statement that
the coherent part, as we defined {t here, contains a significant
fraction of energy.

4. The fractal geometry of turbulence: a brief note

We have i{ndicated that measurements of attractor dimensions are
beset with increasing uncertainties at increasingly high Reynolds num-
bers. But there are other fractal dimensions whose measurement be-
comes increasingly definitive as Reynolds number increases. It is to
a mention of two of these aspects that this section is devoted; more
details should be forthcoming ia [10]. The results of this section
are essentially spurred by Mandelbrot's remarks on several occasions
that many facets of turbulence are fractal.

4a. The fractal dimension of the turbulent/non-turbulent interface

Observations suggest that in high Reynolds number free shear
flows (i.e., open flow systems with no constraining boundary) a sharp
front or interface demarcates the turbulent and non-turbulent regions.
Although a completely accepted view of the detailed nature of this
interface does not seem to exist, a visual or spectral study suggests
that contortions over a wide range of scales occur. This leads one
to the natural expectation that the interface is a fractal surface.

By illuminating a thin section of a flow, and by digitizing the
resulting picture, one can evaluate the fractal dimension of the
curve that separates the turbulent from the non-turbulent regions; a
threshold set on the {ntensity of fllumination separates the two re-
glons. The fractal dimension of the surface bounding turbulent re-
glons {s then one more than that of the curve.

Several methods can be adopted to measure the fractal dimension
{11). We shall describe only one rather briefly. Assign to each
point in the digitized image of the flow a number 1 when the point
lies within the turbulent region, and a number O when it lies within
the non-turbulent region. Let the boundary shown in Fig. 7 represen-

non-turbulent

n A=

turbulent

>

Fig. 7 The boundary between the turbulent and non-turbulent region:.
If 8 circle of radius ¢ drawn around a given point in the
digitized image crosses the boundary, the poiant {s conside:-
ed to be within a distance ¢ from the boundary.
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the boundary between the 1's and the O0's. Count the number Nyle) of
the digitized points which are within a distance ¢ from the poundary.
b If this boundary is a fractal of dimension D, then it is easily shown
from the basic definition of D that
2-D
Nb(s) € . (L)

Measurements to be described in {10] show that (l) holds for
scales ranging from the Kolmogorov scale to a fraction of the inte-
gral length scale (but excluding scales of the order of the integral ¢
scale and higher). The measured value of the fractal dimension for
the interface varies between 2.3 and 2.4; there is no identifiable
variation from one type of flow to another.

4b. The fractal dimension of the velocity and scalar dissipation
tields

Another aspect of turbulence that is a candidate for fractal be-
havior Is its dissipative (or internal or small) structure. it :as been
well-known for some time that the small structure of turbulence is
intermittent. The essence of scale-similarity arguments in this con- 3
text 1s the following. Within a given field of (fully developed)
turbulence, consider a cube with sides of length L , where L {s an
integral scale of turbulence. If we divide this cdbe into a?bitrarlly
large number (n>>1) of smaller cubes of length L, = L n~'/*, the
density of dissipation rate i{n each of these sma}ler 2ubes is distri-
buted according to a probabilistic law. Further subdivision of these
cubes fnto second-order ones of length L, = L. ~'/% leaves the proba-
bility distribution unaltered. This simglatiky extends to all scales
of motion until one reaches sizes directly affected by viscosity.
Clearly, this case cries out for fractal description.

Using methods discussed in {11], we have obtained the results
shown in Table 3.

One concludes from here that the dissipation field i{s not space-
filling (less space-filling in the high Reynolds number regime) and
that (¢) is less space-filling than (b) — a result consistent with
observations in oceanography. Note that the result (b) i{s only at
slight variance with Mandelbrot's [11] original estimate of 2.6.

Table 3: Summary of the fractal dimensions of the dissipation fields

Field Fractal dimension

(a) Kinetic energy dissipation 2.9
(low Reynolds number)w

(b) Kinetic energy dissipation 2.7
(nigh Reynolas number)

(c) Passive scalar (e.g., 2.6
temperature) dissipation
(high Reynolds number)

* The boundary between the low and high Reynolds numter regimes
{s not well~-defined. A convenient boundary occurs at a microscale
Reynolds number of about 150.

;
E ‘
E
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Theoretical explanations of these fracral dimensions, as well as ¢

of the connections that might exist among them, would be of fundamen~- \:
tal interest. ~
:1
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The fractal facets of turbulence

By K. R.SREENIVASAN anpD C. MENEVEAU

Center for Applied Mechames Yale University New Haven CT 06320 1Sy
CBevers ed 25 March 19%6)

speculations abound that several facets of tullv developed turbulent Hows are
tractals, Although the carhier lohing work of Mandelbrot (1974 1973) suggests that
these speculations. imtiated fargely by himselfs are plausible. no effort has vet been
made to put them on firmer ground by resorting to actual measurements i turbulent
shear Hows. This work 1= an attempt at filling this gap. In particular. we examine
the tollowing questions 1) Is the turbulent 'non-turbulent mtertace a selt-similar
tractal. and 0f so) what 15 its fractal dimension ” Does this quantity ditfer from one
rlass of Hows to another © th) Are constant-property surfaces (such as the iso-veloerty
and iso-concentration surfaces) in fullv developed fows fractals’ What are their
fractal dimensions? (¢) Do dissipative structures in fully developed turbulence form
a fractal set / What is the fractal dimension of this set # Answers to these questions
tand others to be less fully discussed here) are interesting because thev bring the
theory of fractals ¢loser to apphcation to turbulence and shed new light on some
classical problems in turbulence - for example. the growth of matenal lines in a
turbulent environment. The other feature of this work is that it triex to quanuty the
seemingly complicated geometric aspects of turbulent flows. a feature that hax not
received its proper share of attention. The overwhelming conclusion of this work is
that several aspects of turbulence can be deseribed roughly by fractals. and that their
fractal dimensions can be measured. However. it is not clear how (or whether). given
the dimensions for several of its facets. one can solve (up to a useful accuracy) the
inverse problem of reconstructing the original set (that is. the turbulent How itself).

1. Introduction

Starting with Richardson (1922), it has been thought that fully developed
turbulence consists of a hierarchy of eddies. or scales of various orders. The
mechanism responsible for this situation is assumed to be that eddies of a given order
(or size) arise as a result of the loss of stability of larger eddies of the preceding order:
these in turn are assumed to lose their stability and generate eddies of a smaller order
to which they transmit their energy. This recurring scheme is expected to terminate
at scales small enough to be stable — that is. scales whose characteristic Reyvnolds
number is unity. It is well known that this lower bound on the scale size is of the
order of the Kolmogorov scale. This theory of cascade. verbalized in a memorable
rhyme by Richardson (1922). and cultivated by Kolmogorov (1941, 1962). Obukhov
(1941, 1962). Onsager (1945) and Weizsacker (1948). has made remarkable strides in
advancing our understanding of turbulent Hows.

It is this description of turbulent flows — namely that thev are "objects’ consisting
of a hierarchy of scales — that leads to the expectation that the theory of fractals
{(Mandelbrot 1982, to which reference must be made for an enjovable and original
account of fractals) must be applicable to turbulence. In the most basic sense. fractals
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N are objects that display self similapty over a wide range of scales (We shall return
S in §5 to the fact that fractals are now used to describe moee general class of objects
N than those displaving strict self-similarity ) Mandelbrot (1482) tor example  has
) remarked that turbulence involves many fractal facets and claimed that a proper
imvestigation of the geometric aspects of turbulence - which has been wnored all
along n the vast hiterature on turbulence - must necessanly involve fractals

:: concepts from Euclidean geometry are totally inadequate He has also led the way

- by his own investigations (Mandelbrot 1974 1975) but n his own words yMandeibrot

-: 19821 thev involve suggestions with few hard results as vet " The imtention of this
paper is to remedy this situation by resorting to actual measurements in turbulent
ﬁ““.\'.

i Analogous to the Fuchdean dimension of classical or ordinaryv) objects cach

fractal object is associated with a characteriatic dimension called the tractal
dimension which forms a basic measure of it fragmentation or roughness 1t has the
property that it is strietly greater than the object's topological dimension. It appears
asa certatn exponent ) = log NV log (1761 charactenstic ot a selt-simifar object which
s made of N parts. vach of which is obtained from the whole by a reduction of ratio
¢ (We hope that this inadequate explanation here. to be amphfied in later sectinns
will not hinder the readability ot this paper ) Of course, a complete description of
fractal sets demands a specitication of other quantities such as lacunanty 1 Mandelbrot
1982) - which. loosely speaking. 15 a measure of how far the fractal object 1s from
being dust-like - or the entire spectrum of scaling tunctions (Halsev «f al 1986) anlv
one of which is the fractal dimension (Even more appropriately. one may use <caling
functions of the tyvpe introduced by Feigenbaum 1983, these scaling functions
contain all the geometric information about the object in guestion. but theyv are
nowhere differentiable and are awkward to handle - even assuming that they can be
constructed somehow .} Our primary effort in this paper will be confined to the
determination of the fractal dimensions (if thev exist) of the turbulent/non-turbulent
interface (§2). iso-velocity surfaces (§3). and regions of active dissipation (§4).1n §5.
we hriefly discuss several other avenues. studied to date in less detail than the issues
of the preceeding three sections. In each section. we layv sufficient foundation for the
specitic issues to be discussed there. Section 6 will put these various measurements
in the overall context of what additional insight one may acquire about turbulent
Hows.

2. Fractal dimension of the turbulent non-turbulent interface
2.1. Background

Observations (Corrsin & Kistler 1954) suggest that in high-Revnolds-number un-
hounded turbulent shear lows a sharp front or interface demarcates the turbulent and
non-turbulent regions (see figure 1). The free edge of a boundary laver shows much
the same behaviour. Townsend (1956) suggested that large eddies of turbulence
contort the interface. but a visual or spectral study of the interface suggests that
contortions over a range of scales oceur. In the framework of scale ximilarity alluded
to above. this leads to the natural expectation that the interface is a fractal surface
The aim in this section is to determine the fractal dimension (if one exists) of the
turbulent/non-turbulent interface in several classical shear lows.

[t is generally understood that turbulent/non-turbulent interface means the
surface separating the vortical and non-vortical regions of the flow: the vortex.
stretching mechanism inherent in three-dimensional motion can be thought of as
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FioUre 1. A short duration shadowgraph of the wake of a projectile shot through the atmosphere
at supersonie speed. This classie photograph made at the Ballistic Research Laboratores. Aberdeen
Proving Ground. tirst appeared in Corrsin & Kistler (1954, and has since been reproduced many
times The remarkably sharp boundary between the turbuleat region in the wake and the outside
air has led to the notion of a contiguous interface whose properties were explored by Corran &
Kistler. and several others later

heing responsible for maintaining a sharp separation between the two regions. That
<uch a surface can be detined was demonstrated by Corrsin & Kistler (1954). who also
studied its properties in some detail. It is by no means obvious that the interface
observed in How-visualization pictures such as figure 1 and the vortical/non-vortical
interface are the same. We shall return to this point later but. until required. we shall
not be specitic about which interface we are discussing.

The prescription for determining the fractal dimension of the interface (surface)
is to cover it with area elements of decreasing size. and note how the area changes
with the resolution ¢ of these square elements. For a surface that is highlyv contorted
with squiggles of ever-increasing tineness. the measured area estimates will increase
indefinitely with increasing resolution. If the surface has no regularity associated with
it. one cannot in general specify the manner in which the area will increase with
increased resolution. However. if some order prevails in the sense that the surface
observes scale similarity — that is. the surface looks the same (at least statistically)
at all levels of resolution. or, equivalently. it is a self-similar fractal - the area increase
will follow a power law: in general. power laws are svmptomatic of self-similar or
fractal behaviour. For a true fractal surface of dimension D, (the suttix 3 indicating
that the interface is embedded in a three-dimensional phvsical space) the area will
indefinitely increase according to the relation

N=¢Ds (2.1)

One can rewrite (2.1) as

_ log N
YT log (L/e)
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Fiovre 2 A schematic of an object F with a tractal interface. and its intersections with a plane
and a line The intersection with the plane leads to an object whose border has a dimension ).
one less than £, the dimension of F embedded in the three-dimensional space. The dimension of
the line intersection leads to a Cantor set whose fractal dimension D, i3 2 less than D,

Thix is the standard relation used in fractal-dimension calculations. The meaning of
the dimension becomes clearer if we >pply this above procedure to classical surfaces.
say a square of unit area. Let us cover the square with 16 area elements each of which
1= of length }. Then D, will be log 16/log } = 2. which is the dimension of the area
of surface in Euclidian geometry. [t is trivial to convince oneself that covering the
square with increasingly finer area elements will always give D, = 2 for the square.
From this simple example and other similar ones. one concludes that for classical
surfaces the dimension calculated from (2.2) has the usual meaning associated with
the dimension. For fractals. the dimension as calculated from (2.2) will in general
not be an integer — and hence the name fractal - but it retains the meaning as the
exponent specifving the rate at which the number .V of area elements increases with
¢. As alreadv noted, a characteristic of a fractal surface is that its fractal dimension
will be larger than its Euclidian dimension of 2. What this implies is that a fractal
surface covers something between an area and a volume, a fact for which the large
degree of convolutedness of the surtace is responsible.

What use is the fractal dimension of a fractal surface since its surface area is
undetined / From (2.1) it is seen that. given the accuracy (or the resolution) to which
the arca needs to be specified. the dimension D, will provide the number of the area
elements of prescribed resolution required to cover the fractal surface. This goes some
way in describing the fractal surface. A complete specification of the fractal surface
no doubt requires additional information. such as the location and the orientation
of these little area elements. but the dimension is the basic quantity related to the
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convolutedness of the surface. A measure of the convolutedness of a surface is of
importance. for example. in the contexts of combustion.

220 Dimension from sections with lower-dimensional subspaces

To meaxure the fractal dimension ot a surface by the direct procedure deserihed above
i= dificuit. and =0 we adopt alternative procedures based on sections with lower-
dimensional subspaces (Mandelhrot 1982). To explain this. it is convenient to refer
to figure 2. Let F be an object (e g, a turbulent jet) in three-dimensional space wirh
a tractal interface of dimension ), Let P he a plane intersecting the object. In
analogy with our experience in Euclidean geometry. we may expect that the fractal
dimension [, of the boundary of the resulting object PN F and the dimension 7,
are related by

D,=D,+1. (2.3

Nimilarly. an intersection of the object F with a line element gives a set of 1solated
points - akin to the Cantor discontinnum - whose dimension [J), can be measored
Again. in analogy with classical objects. we expect that

D,=D +2 (2.4

Although there are exceptions to this rule (Mandelbrot 1952, p. 133). it is known to
hold it the sections taken are independent of the tractal itself. Equivalently. the
orientation of the intersecting plane or line will be irrelevant if the fractal is isotropic.
More discussion and a brief circumstantial justification of this point will appear in
#§2.3 and 2.4

It is appropriate to mention here that the interface cannot be a true fractal because
the scale similarity at all scales. leading to one tixed value of D,. does not strictly
obtain. Clearly. it will be truncated on the low end by the Kolmogorov scale: that
is. it one measures the area of the interface with resolutions better than the
Kolmogorov scale. it behaves like a classical surface of finite area (because surface
convolutions on even tiner scales do not exist). On the upper end. it can be expected
to be hounded by scales comparable with or smaller than the large scale of the tiow
Thus. the interface can be expected to be fractal-like only in an intermediate range
of sealest. This is not a highly restrictive situation because. in all practical
circumstances. there are inevitable scale cutoffs. and any meaningful application of
the fractai concept to real circumstances will have to live with this fact. At large How
Revnolds numbers. the range of scales over which similarity can be expected to hoid
is large: and. naturally. it is easier to identify the fractal-like behaviour. A= will he
described more fully at appropriate places. instrumentation constraints restricted our
experiments to moderate Reynolds numbers (the integral to Koimogorov scale ratio
no more than a few hundreds). Even so. the results are sufficiently convincing to
justify their publication: besides making the important connection between fractals
and fluid flows. they shed new light on some classical problems of turbulence.

2.3. Dimension by intersection with a plane

The practical way of obtaining two-dimensional sections or slicex would be to seed
the flow with some passive markers (¢.g. smoke). illuminate a section of the How by
a thin sheet of light. and photograph the section for later analysis. namely measuring

t It s worth pointing out that. while the large scale 1s set by the How houndary conditions and
the wmall scale by the viscosity of the fuid. the equations of motion themsetves do not set ar new
~cales which 15 what renders the scaling expectations plausible
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Ficvre 3 A smoke photograph of a turbulent boundary laver developing on a dat plare The
momentum thickness Revnalds number s around 20000 The thickness of the intersecting light <heet
1x of the order of the Kolmogorov thickness

the dimension of the “border” between the turbulent and non-turbulent regions
Although the intersecting plane must in principle be mathematically thin. it may in
practice be of finite thickness without violating thix principle. provided the thickness
is smaller than or comparable with the Kolmogorov lengthscale . The rationale for
this assertion is that the “fuzzing  due to the finite thickness of the plane is negligible
because the Kolmogorov thickness represents the smallest scale of motion relevant
to turbulence dynamics.

We have alreadv alluded to the fact that smoke pictures (or pictures obtained by
any other means of flow visuahzation) do not mark vorticity regions (which they
should. to be truthful to the interface) for the following two reasons. both related
to the diffusivity of the passive marker. If we remember that smoke isx composed of
aerosols ( = oil fog) whose diffusivity is small compared with the molecular viscosity.
the relatively large value of the effective Schmidt number will create a disparity
between the smallest dvnamical scale (i.e. y) and the smallest scale visible in the low.
This is not too worrisome as long as the latter is smaller than the former. The sevond.
and more important. point is that to mark the interface satisfactorily. one has to put
smoke exactly where vorticity ix being generated. which is strietly impossible.
Obviously. if one puts smoke very far upstream of the observation point. the pattern
one sees is in general a remnant of the integrated memory that a given streakline
experiences, and not necessarily a reflection of the local dvnamies and geometry.
Because turbulence diffuses smoke rather rapidly. there is some hope. however. that
it will roughly mark the interface if carefully injected in the fully turbulent region
reasonably close to the region of visualization. but not =0 close that it does not have
time to diffuse.

Even if one grants the plausibility of this last statement. even roughly marking the
interface by smoke is admittedly a trial-and-error procedure in practice. The issue
is worth exploring in detail - which we have not done - but there are reasonx of
prececience which are somewhat reassuring. For example. the statistics of the
interface obtained by marking it with hvdrogen bubbles (Kim. Kline & Revnolds
1971) and by heat (Sunyach & Mathieu 1969) agree favourably with those obtained
by momentum and other means: we ourselves have recorded elsewlhere (Nreenivasan.
Antonia & Britz 1979) some simultaneously obtained traces of two components of
Huctuating velocity. Revnolds shear stress and the temperature fluctuation in a
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Fictre 4. A section of an axisvmmetric jet made visible by laser-induced fluorescence. from :
Dimotakis et al. (1981). Scales down to the Kolmogorov limit have been resolved in this picture ¢
slightly heated jet, which confirm that passive scalars are useful for marking the
interface. The final point must no doubt be that. although our procedure is believed .
to mark the interface roughly it is the smoke/no-smoke interface that we are strictly '
studying.
Anocther concern is that a streamwise section is somehow preferential. thus biasing
the results. To test this. one ought to take plane sections of the interface at several :
orientations and demonstrate the invariance of the results. For the anisotropic flows "
of the sort studied here, it is possible that the scale-invariance concept must be ;
thought through more thoroughly. and that one may come up with more than one v}
fractal dimension depending on which planar section one is measuring. Our work in Y
this direction is continuing, but our argument is that the present results are o
representative. .
Figure 3 shows a section of a boundary laver made visible by injecting smoke. This .
figure appears to suggest that there is no contiguous interface. and that there are K
islands of non-turbulent regions surrounded by turbulent ones. just as there are ,
isolated pockets of turbulence sticking out. The reason that photographs like figure 1 ;
do not show this feature is that they have been obtained by optical means which )
integrate along the path of light. Obviously. this will smooth out the interior "holes ™. y
and what one sees as a contiguous interface is the horizon of a large number of images ;
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FioURE 5. A schematic of a part of a digitized image. The dark dots represent the points with
intensity above threshold (turbulent regions. by definition here). the light ones representing
non-turbulent regions. We want to measure the fractal dimension of the border between the two
regions. The little circles of radius e drawn around a dark and a light dot in the upper richt corner
are two examples of boundary points within the distance €.

superposed on each other. Dimotakis. Lye & Papantoniou (1981) pointed out this tact
tirst. and produced several fascinating pictures of a turbulent jet. one of which is
reproduced here as figure 4. (No analysis was attempted by us on the pictures
obtained by these authors.) Plane sections by themselves cannot deny the existence
of out-of-plane connections of what appear as islands or holes. and we should
emphasize that to prove the non-contiguity of the interface one has to produce at
the very least simultaneous pairs of pictures in perpendicular planes. In the absence
of such work. the point is made here for the sole purpose of indicating that. if the
interface is indeed non-contiguous. the fractal dimension one obtains will not lose
its meaning but will have to be interpreted as a measure of both its “roughness” and
‘fragmentation . and not merely of the former. as would be the case for a contiguous
interface.

We may now discuss several ways in which the fractal dimension D, of the border
can be measured. The length of the border. in analogy with the coastline of an island
cluster, increases with increasing resolution according to the relation

L =Ke 0 (2.5)

where ¢ is the lengthscale relating to the fineness of resolution. and K is a constant
related to the lacunarity of the fractal set. This direct method has so far eluded us
chiefly because of the algorithmic complexity in faithfully following the highly
contorted. multivalued and disconnected interface (see figures 3 and 4). and alter-
natives seem called for. We have adopted a simple alternative spelt out in Mandelbrot
(1982) and Grebogi et al. (1985). but summarized here with the anticipation that they
may be unfamiliar to a number of the Journal's readers.

Considering both regions (turbulent and non-turbulent) that are within a distance
¢ from the border, one can form a strip of width 2¢ about the border. which will have
an area of 2¢L, where L is the length of the border. This area clearly goes like ¢2~01.
from (2.53). One measures this area for varving €. and obtains D, from the slope of
a log-log plot. The implementation of this idea involves the following procedure. One
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Ficere 6. The logarithm (to base 10) of the number of houndary points .V, (see tigure 3) as a function

of the distance e from the boundary. The How is a heavily mpped houndary layer. thickness about

Wem. I =235ms"" The Kolmogorm and the integral scales are shown for reference. The inset
| ~howing the slope gives ), = 2—mean slope = 1.37: [, is thus expected to be 2.37

digitizes the image of the low obtained as described previously. and obtains an
assignment of light intensity at each of the digitized points. One then sets a judicious
threshold for the light intensity which demarcates the turbulent (above-threshold)
from the non-turbulent (below-threshold) regions. (Naturally. one has to ascertain
that the precise value of the threshold is not important for the results to foilow. and
evidence to this end will be presented at the appropriate place.) One then obtains
a digitized image. schematically shown in tigure 5. where each dark dot is a digitized
image point in the turbulent region and each light dot in the non-turbulent. It is the
dimension of the border between the two regions that we want to measure. The
conceptual equivalent of the data processing on the computer is the following. Draw
around each of these digitized points (dark as well as light) circles of radius «.
Whenever a circle drawn around a point crosses the border. obtained by interpolation
between the neighbouring light and dark dots. the point is counted as a border point
' within a distance € from the border. Count the number of all border points .V, (€) within
the distance ¢ from the border. Repeat the process for varving €. and determine the
variation of .V (e) with respect to . From the earlier discussion in the paragraph.
we have
Nple) oc €27 Ds, 2.6)
For future reference, we may note that the quantity 2— D, (or in general d—D,.
where D, is the fractal dimension of the object’s interface in the embedding space
of dimension d) is called the codimension. In most well-behaved (i.e. integrable or
non-chaotic) systems. a small amount of uncertainty ¢ in the initial state will translate
to a comparable final-state uncertainty. For fractal objects. the final-state
uncertainty is large and proportional to ¢2c, where D, is the codimension (Grebogi
et al. 1985). The codimension appears again in §4.
Figure 6 shov.s a plot of log Ny (€) rs. log € obtained from the digitized image of the
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‘_: FicUre 7. The effect of threshold setting on the codimension. The threshold (in the notation of [

. the text) varies by a factor of 1.5 with no perceptible change in the slope. In the units described

in the text. the thresholds are (from top to bottom) 3000. 35300 and 4000.
b

4

N tvpe shown in figure 3: the inset shows the slope of the curve. Clearly. there is a region ‘

~ of constant slope as expected for a fractal interface. Several comments must be made |

. before interpreting the result. First. the low end of the constant-slope region is |
w comparable with the Kolmogorov scalet. The high cutoff seems to occur around /.

o p g g 8

- where / is the transverse integral scale of turbulence in the boundary layver. (This

integral scale was obtained from two-point correlation measurements with the tixed
¥ probe at y/d = 0.4 and the other probe moving outwards.) The obvious conclusion
that the scale similarity extends only up to / on the high end is not correct because.
as we shall soon show. the high cutoff occurs prematurely because of the limitations
of the image processing procedure. To obtain reliable statistics on the high end. one
has to include many large scales in the digitized image. which is usuallv hard
(especially if the fine resolution requirements are to be satisfied also) because of the
finite capacity of the image digitizer. We have not been able to do that. which means
that the apparent termination of scale similarity at 1/ is artificial. This shortcoming
is overcome in the line-intersection method of §2.4.

The second comment relates to the effect of the threshold setting on the slope in
figure 6. At least within the threshold range of 3000—4000 for the light intensity (the
units being such that 12000 indicates the brightest spot in the picture and 0 the
darkest), the power of € in (2.7) is essentially constant (tigure 7): the threshold of
figure 7 is about +15°%, of that used in the boundary-layer work. The third relevant
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v e

e t There is some concern that to detect similarity on scales of the order of 5. the resolution of
the digitized image must be substantially smaller (at least by a factor 2). Figure 8 shows that this
factor is about 1.5 for present measurements. We may remark that estimating » to an accuracy
better than a factor 2 is beset with many uncertainties: among other things. it depends on the precise
location in the flow. the assumptions made in obtaining the energy dissipation. the probe size. etc.
The number quouted in figure 8 is thus a representative value.
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Frorre 8. Calibration experiments for the imaging method. The continuous line (mean slope =
codimension = (.3) is for a quadric Koch island. and the dashed line (codimension = 1) is for a
square. Their respective dimensions are in good agreement with the theory.
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Figrre 9. The logarithm (to base 10) of the number of boundary points .V, (see figure 5) as a function
of the distance ¢ from the boundary. The flow is a round water jet seeded with polystyrene spheres.
Jet exit Reynolds number is about 2500. diameter D = 5 mm: x/D = 30. The inset shows that the
slope of the line is 0.87 +15°,.
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comment concerns the “calibration” experiments on some well-known fractals (e.g.
a yuadric Koch island. Mandelbrot 1982, p. 50) and regular objects (such as a black
syuare). As shown in figure 8. it is clear that the codimension (mean slope of the
curves) is 0.5 for the Koch island (i.e. D, = 1.5. the theoretical value). and | for the
square ([), = 1).

Putting all this together. we vonclude from figure 6 that scale similarity extends
from 5 up to a fraction of £ (the precise value to be determined shortly). and that
we have D, = 2-slope = 1.38 (for the border). leading to the conclusion that
D), = 2.38 (for the interface surface).

Figure 9 shows similar data for an axisymmetric jet of water Howing vertically
down into a large tank of still water. The jet was seeded with polvstyrene micro-
spheres: both seeding and gravity effects were considered negligible. A part of the jet
in the developed region (in the vicinity of x/D = 30) was intersected by a thin sheet
of light. photographed and digitized as before. Again. scale similarity extends all the
way from y to a fraction of /. for reasons already mentioned. we think little of the
tact that the high cutoff occurs at i/ (instead of }/ in the boundary laver) or that
the slope is slightly different from the boundary-layer case. This latter is well within
the scatter of the data (about which more will be said in §2.4).

In determining the dimension. we have chosen to digitize certain regions of the
cross-section that are neither too close to wall (or jet axis) nor too far away from it
Both for the jet and the boundary layer. the digitized image spans (approximately)
0.6 <y < 0.1. where y is the intermittency factor representing the fraction of time
the ow is turbulent at a given point in the flow. We empirically found the region
just mentioned to be optimum given the image-processor constraints.

2.4. Dimension by line intersection

As discussed earlier, the dimension of the set resulting from line intersection of the
interface (yielding simply a “truncated’ Cantor set of dimension less than 1) is
expected to be two less than that of the interface, D,. In practice, we have interpreted
that this statement holds true for the one-dimensional cut obtained by intersecting
a moring interface with a small (i.e. y or smaller) stationary hot-wire probe. This
assumes the validity of Taylor's frozen-flow hypothesis, which we know is not strictly
true. but much can be learnt in spite of this shortcoming.

As is standard in the turbulence literature. we formed the intermittency function
from the measured velocity signal by setting a convenient threshold and a hold time.
The reasonableness of the threshold as well as the hold time was ascertained by a
comparison of the resulting intermittency function with the original signal. The set
of intersection points between a horizontal line and the intermittency function results
in a 'truncated’ Cantor set whose dimension D, we want to measure. To obtain D,.
the s0-called box-counting algorithm. which is merely the application of (2.2) for line
elements. has been employed. It makes direct use of the definition of fractal dimension
by counting the number .V, of the line segments of length ¢ required to cover the set
for several values of ¢.

Figure 10 shows a typical set of data for .N, vs. ¢ for the boundary-laver flow. It
is seen that there is a sizeable region of constant slope. giving in this instance
D, = 0.4; we infer that D, = 1.4 and D, = 2.4. It should be noted that D, inferred
from one-dimensional cuts is approximately one less than D, inferred from inter-
sections with planes. thus providing some circumstantial justification for the method
of sections with lower-dimensional subspaces discussed in §2.2. Note also that the
region of self-similarity does not extend all the way down to » as in the two-
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Firovre 100 The logarnthm (to base 103 of the nunoer of segments N, of length « needed to cover
the Cantor discontinuum tormed by the intersection between a horizontal line and the mtermittency
function iturbulent boundary layer. 48 = 091 17 =12 m <7"). The inset shows the dimension
17, as atunction ot the position of the line intersection. or probe height from the wall in the boundary
Liver obtamed for several chunks of data. Corresponding intermittency factors. from the highest
to the lowest are 0041024019 0.13. 0. 10, 0.0,

dimensional slice method of §2.1. and even scalex up to 305 do not fall on the straight
part. Part of the reason is clearly the problem related to Tavlor's hypothesis and the
size of the hot-wire. which is several » long (approximately 10y in this case) both of
which will bias the results at small scales. A more basic problem is related to the
inappropriateness of using the streamwise veloeity for constructing the intermittency
tunction. One should ideally use a vorticity probe (which gives a much clearer on-off
signal). or a passive scalar that is uninfluenced by the long-range effects of the
turbulent pressure field. However. the outer cutoff does not occur until # or bevond.
C'ombining this result with the inner cut-off of the previous subsection. we might
conclude that scale similarity extends between 7 and 3/. (The outer cutoff is thus
approximately the streamwise integral scale. which is of the order of the boundary -
laver thickness.)

It is now helpful to examine the sensitivity of the dimension results with respect
to position in the intermittent region where the one-dimensional slice was obtained.
The inset in figure 10 shows the data as a function of the probe height in the
intermittent region of the boundary layer. Because the interface is rarelyv found deep
in the How. not surprisingly. we cannot compute the dimensions for y <0.54
{corresponding to a y of almost unity). In fact. calculations become uncertain tor
i < 0.7 4 (or. roughly. ¥ > 0.6). say. and hence we have not presented any results
there. The variability of D, is about 109, in the region 0.73 < y/8§ < 1.0 where the
measurements are trustworthy: further. it is approximately in this region that the
two-dimensional slices were taken. ('learly. then. this latter method may be expected
to represent an average of values obtained from one-dimensional slicing: it is
somewhat reassuring that this is indeed the case. We conclude that one-dimensional
cuts offer a reasonably valuable tool. The main contribution of this method has been
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Fractal dimension of interface (surtace) by

two-dimensional gne-dimensional
Flow slicing slieing
Boundary laver 238 2 4ot
Axisvmmetric jet 233 232+
Plane wake -— 2378
Mixing laver — 2.40%

+ Typical average over a range of the outer How
¥ Single value at some typical location in the outer region

TaBLE I Summary of the fractal dimensions of the turbulent; non-turbulent interface 1n
several classical turbulent Hows

to show that scale similarity extends all the way up to about the integral scales of
motion. Recalling that the larger eddies. which are highly dependent on the boundary
conditions for the low . are a few integral scales long. we infer that the scale similarity
does not include the biggest scales in the flow. Our conclusions about the interface
are summarized in table 1.

From here. the interface dimension of about 2.3-2.4 is seen to be essentially
independent of the type of How. What this means is that one cannot conveniently
assign a distinet fractal dimension to each of the different classes of flows. We reiterate
that this is not surprising because scale similarity does not encompass the largest
scales. which are the ones that depend strongly on the geometric aspects of the flow.

To the extent that in both methods we have examined the interface approximately
in the region 0.6 <y < 0.1. we are not completely justified in talking about the
dimension of the interface as a whole. although we expect that what is true of the
part is true of the whole. We have already commented on the constraints in the plane-
intersection method. One runs into two problems in the line-intersection method.
Outside the region we have covered, the infrequent appearance of the interface there
would demand the inclusion of data for long intervals of time in order to obtain
reliable statistics. and this violates Taylor's frozen-flow hypothesis. This is relatively
casy to overcome, at least in principle. by resorting (for example) to intersection by
a suitable laser beam of a fluorescing flow. Although this should be attempted soon.
we have not done it immediately because waiting for enormously long times results
in a randomization of results that will obscure the fractal nature: this point is best
deferred to §3 where it is more fully discussed.

Finally, it may be worth remarking that Maxworthy (1986) finds D, = 1.37 for the
interface of the flattened bubbles of air injected into a viscous fluid contained in a
Hele-Shaw experiment.

2.5. Fractal dimension of clouds: a brief comparative study

Lovejoy (1982) obtained the fractal dimension of clouds using the so-called area-
perimeter rule (Mandelbrot 1982. p. 112). For classical objects. the perimeter P and
the area A are related through P x 4. For an object with a fractal boundary of
dimension D, , the relation is modified to P ac AYPts. Thus. if one has different sizes
of statistically similar fractal objects, this area-perimeter rule (both P and A4
evaluated to the same resolution) can be used to determine D,,. Lovejoy used
aigitized images of satellite and rain-pattern pictures of clouds with sizes varving




Fractal farets of terbulence 371

between | km and LMK} km. and obtained the fractal dimension of about 1.34. It is
the coincidence of this number with that obtained by us for [), in laboratory turbulent
Hows that calls for specitic comment. Recall that we took a slice of the How to ubtain
D,. whereas Lovejoy was looking at the boundary of the projection of a cloud onto
a horizontal plane. The kev question then is the difference between the two
techniques. We know of no rigorous analysis of this point. However. a projection can
be thought of ax superposition of a large number of sections. each section being
separated from the other by distances of the order 5.

Going back to figures 3 and 4. we mayv qualitatively perceive the effect of
superposition of several sections. One effect is obviously to reduce the interior
fragmentation (leading to a reduced tractal dimension). but the other effect 15 to
increase the boundary roughness (leading to an increase in fractal dimensiony [t s
the net effect in which we are interested. If the fractal dimension ix small (that is.
neither the interior fragmentation nor the boundary convolutedness is very large).
D, and D,, cannot be very different. While taking sections of clouds is not within
our capability. superimposing sections of boundary-layer or jet lows can easily be
done by increasing the thickness of the light sheet. This has been done. and the result
ix that increasing the relative size of the light-sheet thickness (from between 1 and
2p to about 3p) increases the dimension D, (from 1.37 to 1.43). suggesting that
D,, > D,. In doing this experiment we could not unfortunately hold the Reynolds
number constant. but if we believe that the primary effect of increasing the Revnolds
number is to increase the range of scale similarity (but not alter the dimension). this
increase in [, is conclusive enough. If this reasoning holds for clouds. we may
conclude that D, < 1.34. [t is interesting that Carter ef al. (1986). using an entirely
different procedure from Lovejoyv's. arrive at a number of 1.16 for D,.

We have become aware from a preprint by Lovejov & Schertzer (1986) that smaller
dimensions than 1.34 have in fact been obtained for clouds by setting the threshold
to higher values. The result that the more intense regions of a fractal are distributed
on sets with lower fractal dimensions is described in §§3 and 4.3. and is apparently
quite general (Halseyv ef al. 1986).

3. Dimension of iso-velocity surfaces in boundary layers

Here. we seek the fractal dimension of surfaces separating regions of velocity above
and below a certain chosen level. say u, in figure 11. One can similarly (and more
satisfactorily) address the issue of iso-concentration surfaces. We have used the
line-intersection method described in §2.4. As before. we get Cantor discontinua
whose dimension can be obtained by the box-counting method. The hope is that
adding 2 to the numbers obtained will yield the fractal dimension of iso-velocity
surfaces: again, one should keep in mind the various aspects discussed in §2. Figure
12 shows results from a box-counting algorithm implemented on a signal obtained
in a boundary layer at a height of 0.356. The different curves are for different segments
of the same (long) signal. To within the variability of about 129, the line drawn
through these various curves represents a mean behaviour. Such results can be
obtained for several velocity levels of the same signal (the uncertainty is largest for
levels near the mean velocity) and for signals obtained at several heights in the
boundary layer. all of which are consolidated in figure 13. The dimension is highest
for the iso-surface for the local mean velocity. and drops off on both sides. Further.
the peak value of the dimension goes up slowly towards 3 as the distance from the
wall increases (see inset).
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Fiivre 12, The logarithm (to base 10) of the number .V, of the line segments of length ¢ required to
cover the Cantor discontinuum obtained by the intersection of the threshold level «, (=075 )
with the velocity signal. y/§ =035. 1", =20 ms™' § = 4 em. Each line in the figure (nrrf“ipnnd\
to a different segment of the velocity ﬂlgnal each of which is of the order of 100 transverse integral
scales long (see text). The mean el()pe (Dy) i3 0.50 with a variation of +12°, giving a Uy = 2.50

A complete interpretation of these curves must take into account several factors.
We expect the dimension to be largest for the most space-filling iso-velocity surface.
or the velocity with the largest number of ‘level crossings” (which roughly translates
as the largest probability density - see. for example, Sreenivasan. Prabhu & Nara-
simha 1983). In the fully turbulent regions of the boundary lavers. the peak of the
probability density of the velocity signal occurs roughly at the mean velocity. Far
into the boundary-layer free stream (i.e. y » 6). we should ideallv expect nothing but
the free-stream velocity to prevail everywhere: thus the set u, + {7 s a null set and
its complement. namely the set u, = [_. is really a classical volume for which the
dimension must equal 3. In practice. the presence of some overriding noise on the
free-stream velocity will reduce the peak dimension to something smaller than 3 and
produce a spreed onto the neighbouring velocity levels. In the intermittent regions.
where laminai chunks of signal are interspersed between the turbulent ones. the
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FiorrE 13 The dependence of the dimenston of ixo-surfaces of <treamwise velocity as a tunction
of hath it< magnmitude and the distance from the wall The spread ix smaller as one goes away trom
the wall. while the peak magnitude [7* (shown in the inset) increases The sohd curve with no data
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Fiivre 14 The effect of increasing the data segment length used for computing the dimension
The data segment length is. from bottom to top 307. 83/, 132/, 200/ and 430/ where / 13 the
transverse integral lengthscale. For small lengths. there is a distinct constant-slope region over the
seales of interest: this becomes less conspicuous as the signal length increases. For large data
segments. one can tind a constant-slope region in the scale region far larger than the integral scale.
the dimension 1), is very nearly 1. however.
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and to the same amount of pomnts randomly distributed on a line. curve (2} For curve 2 there s
no self-similarty range only at large scales. for which the set lovks like a solid ine do we st
D =1

dimension of an iso-velocity surface must be a weighted average between those of

the same iso-surface in the turbulent and non-turbulent regions: the dimension will
now peak at around the mean velocity in the non-turbulent region because the
distribution of the Cantor-set elements is much denser there than anvwhere else
(with or without noise): according to the measurements of Kovasznay. Kibens &
Blackwelder (1970). the mean velocity in the non-turbulent region is approximately
the same as the overall mean velocity (at least to the accuracy appropriate in this
context}). It is also logical that the dimension must get smallest near the wall because
the strong viscous effects will inhibit excessive contortions of an iso-velocity surface.
While all these interpretations are consistent with the data of figure [3. note that the
data of figure 13 do not apply to iso-surfaces in the non-turbulent regions only. and
hence cannot answer questions related. for example. to the dimension of an
iso-velocity surface with u, = 0.90, residing entirely in the non-turbulent region.

In figures 12 and 13. we have used many segments of signal that are of the order
of 50 transverse integral tim: - ales long, and ensemble averaged over them. This
should be quite acceptable be  use all iso-surfaces are only a few integral scales in
streamwise extent and small in the transverse direction. We should point out.
however. that if one uses few: - 1onger chunks of the signal for the calculations (the
total length remaining the same). the straight-line regions become more and more
ambiguous. until they disappear altogether for signal lengths bevond. sayv. 500
integral scales long (figure 14). The distribution then takes the shape characteristic
of a random process (figure 15). What this implies is that the iso-surfaces are
fractal-like when viewed on timescales of the order of 50 integral timescales. but
behave more akin to random processes when viewed on timescales an order of
magnitude larger.

An operationally helpful comment on the long-time randomization of the self-
similar behaviour observed over short times is the following. If two separate segments
of data show fractal characteristics but with slightly different fractal dimensions. it
is easy to see that the sum of the two segments of data will in general not ~how the
fractal behaviour. (The sum of two processes. each of which is hyperbolically
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distributed. will also be hyperbolically distributed only if the scaling exponent is the
same for both.) The observed randomization is a rough consequence of the central-
limit theorem for the collection of a large number ot slightly different and nearly
independent events. If we argue that fractals are intermediate between complete
order and total chaos. we mayv interpret our tindings as revealing short-time order
tor order over small extent) and long-time disorder in turbulence - a concept that
has support in a variety of ciccumstances in turbulent Hows,

iy Sy e

IR TR

4. Fractal dimensions of dissipative structures of turbulence
Another aspect of turbulence that is a candidate for fractal description is its
dissipative (or internal or smally structure It is known (Batchelor & Townsend 19449, -.
that the small structure of turbulence 1: intermittent. and that scale-similarity \
arguments (e g Gurvich & Yaglom 1967 are very helpful in describing it. The essence .
of seale-similarity arguments in this context is the following. Within a given field of }
(fuily developed) turbulence. conzider a cube with sides of length L. where L is an
integral scale of turbulence. If we divide this cube into a number {n » 1) of smaller
cubes of length L, = L n"t. the density of dissipation rate in each of these smaller :
cubes s distributed according to a certain probability law. Further subdivision of -
3 these cubes into second-order cubes of length L, = qn* leaves the probability .
distribution unaltered. This similarity extends to all scales of motion until one reaches :
sizex directly affected by viscositv. The simplest distribution is the binary one
according to which a given high-order box either contains dissipation or does not
It 1s this simple picture that we shall pursue. The goal in this section is to examine
the appropriateness of tractal description for the dissipative structure of both
turbulent energy and of a passive-scalar tield. Except for the material in the following
subsection. which 15 an update of some carlier work. the rest of the material in this :
l Section Is new.

-

An update of Mandelbrot's work
Let 7 be the fractal dimension of the dissipative field. (We shall avoid using the
subscript 3 in this instance hecause there is no ambiguity.}) When we have resolved
the smallest scales . and determined the number V of boxes of size y reguired to
cover the entire dissipation regions. Z can be calculated according to its detinition- )

v -

log .V . .
- N=(L x 1.1 (R
9 log(Lo/r;) or (Lo/n) { )

Nince each (ube has a volume of the order (L,/7)%. the total volume occupied by the
cubes of active dissipation is (Ly/7)? 73 Since all dissipation is contained in these
cubex. the level of dissipation in them is (L,/7)* “ times the global average value.
Assuming local isotropy. this means that (du/dr)? in the dissipating cubes is
(Lo/7)*~? times the global mean. Consequently. the kurtosis (or the flatness factor)
of du/drx. detined as

_vf-rf
s |

— =2
Lofcund Cu?
K=(=) (=) (4.2)
or or
will be given by (L,/n)*3? times the volume occupied by the dissipating cubes.
(Note that this assumes the identity of the set supporting disapation and that
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Fiorre 16. The variation of the kurtosis of (du/dt) as a function of the microscale Revnolds number.
With minor moditications. this diagram is the same as figure 2 of Van Atta & Antonia (1980).
Batchelor & Townsend (1947, 1949). grid turbulence . @, Friehe. Van Atta & Gibson (1971). careular
eviinder: @. Gibson. Stegen & Williams (1970). atmosphere: O. Wyngaard & Tennekes (1970
mixing layer and atmosphere: A MeConnell (1976). atmosphere. . Park (1976). atmosphere: 3.
Williams & Paulson (1977). atmosphere: W. Champagne (1978). atmosphere: @. Kuo & Corrsin
(1971). grid turbulence and circular jet: d¢. Pond & Stewart (1963). atmosphere
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Ficvre 17. The kurtosis of the temperature derivative (d7/d¢t). @. McConnell (1976). atmosphere .
<. Antoma ¢t al. (1980). atmosphere: D. Antonia & Danh (1977). atmosphere: O. Sreenivasan.
Antonia & Danh (1977). boundary laver: A. Gibson et al. (1970). atmosphere. . Park (1976).
atmosphere . (J. McConnell (1976): jet. ¥. Antonia & Van Atta (1975): D. Antonia & Danh (1977).
jet: . Gibson & Masiello (1972). jet: W. (iibson et al. (1970), jet.

supporting (du/d¢t):. We are strictly calculating the fractal dimension of the latter.)
From (2.4). we have ,
x (/7% x RO (4.3)

where R, = u'A/v. A being the Taylor microscale and «’ the root-mean-square
streamwise velocity. If we invoke Tavlor's frozen-field hy pothesis. the flatness factor
of (du/dx) is the same as that of (du/d¢t): Antonia. Phan-Thien & (Chambers (1930)
have shown that this is true to within about 7°,. A plot of log K. where now K is
the kurtosis of (du/dt). rs. log R, will vield the co-dimension (3—-2).

Mandelbrot used this argument and from an examination of the kurtosis data from
Kuo & Corrsin (1971). estimated & to e 2.6. More data have become available since
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Fiorre 18 The hypertlatness of (7T A6y @. Yeh (1971). @. Sreenivasan. Antonia & Danh
nnpublished) boundary laver. W, Antona & Van Atta (197%). jet. A. Antonia & Van Atta (1978).
laboratory houndary laver. . Antonia & Van Atta (197%). atmospheric boundary laver over land:
B Park (1976, atmospherie boundary laver over water.

then. and are plotted in figure 16. With small modifications and additions. this figure
1= essentially a reproduction from Van Atta & Antonia (1980) who first compiled
them. Given the difficulties in obtaining the data. they may be considered to collapse
on a line with a slope of 0.4, vielding a Z of 2.73. a revision from Mandelbrot's earlier
estimate. This means that the fractional volume (Ly/n)“~® occupied by the
dissipation field is given by (L,/7)7**. For R, < 150. the slope in figure 16 is decidely
smaller (2 0.15). which vields a & of 2.9. This indicates either that the dissipation
regions at low Revnolds numbers are less spotty or that local isotropy does not obtain.
Baoth are likely.

1.2, Fractal dimension of the temperature “dissipation’ field

Precisely the same arguments show that the kurtosis F, for the temperature
derivative (dT/dt) is related to the Revnolds number as

W3-2%
Fy < R; .

where Z* is the dimension of the temperature dissipation field. From figure 17. where
all the available data have been collected. we conclude that 2* = 2.6. (By drawing
a line with a slope of 0.52 on figure 16. it is easy to see that the difference between
the scalar and momentum dissipation fields is indeed statistically significant.) The
temperature dissipation field (and by inference. those of all passive scalars) is less
space filling (% (L,/7)7%%). or is more intermittent. This result has been known to
oceanographers for some time.

Similar arguments suggest that the so-called hyperflatness (i.e. the normalized
sixth moment) of (d7/d¢) must behave like R}"""‘ Figure 18 shows that thisis quite
consistent with the experimental data for R, > 100.
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Fiovre 19 Log N, r+ log ¢ for the “dissipation” field in grid turbulence by a line intercept using 4
threshold of 5u4®. The inset shows the dependence of the resulting dimension on the threshold used
to identify the iso-dissipation surface.

4.3. Dimensions of iso-dissipation surfaces by the line-intersection method

[t is obvious that the volume occupied by the dissipative structures depends on the
threshold employed to identify the dlssxpanon regions. There 1s no explicit mention
cf any threshold in the above method. which is both its strength and weakness -
weakness because one does not really understand the inherent experimental definition
of dissipation regions: the probes and the differentiation operations somehow set a
threshold of their own. To permit sharper questions about the dependence on the
threshold or. equivalently. about the dimensions of iso-dissipation surfaces. it ix
useful to resort to the line-intersection method. The method here is in principle free
of some of the ambiguities raised in earlier sections because of the expected statistical
isotropy of the dissipation regions. even in inhomogeneous shear flows. The procedure
is exactly the same as in §2.4. except that we replace u by (du/df)?. Figure 19 gives
a tyvpical result in grid turbulence for the threshold setting equal to 5 times the global
mean value of dissipation. The slopes in the appropriate regions of similar curves
obtained for various thresholds are shown in the inset. The fairlv strong dependence
of 2 on the threshold means that the dissipation regions identitied by higher threshold
settings are less space filling (obviously!). and the surfaces bounding them are less
convoluted. (Similar data for clouds have now been obtained by Lovejov & Schertzer
1986.) It must be mentioned that the range of scales over which self-similarity can
be observed shrinks as we approach lower thresholds. thus making the dimension
measurements more uncertain for iso-surfaces containing most of the dissipation (i.e.
low threshold): this accounts for the larger scatter there. We observe however that
the mean trend is to intercept the &-axis at a value of near 2.7. which compares verv
well with the value obtained in §4.1.

We saw earlier that the volume occupied by the dissipation structures is small.

ST Syt S ST AN

-
s.'CA.""-\.'_\' N AN NN A 'a..x.:.‘

At R A A A\ d s St el e A\ Sa At e ANt b gt e Al b"f




e’ B '8%" 1 40 s AN g",  a el ety ey ho a¥y AV, AV LA W WY - (AT WY . = A

Fractal facets of turbulence 379

equal to (L,/m* * Fractal sets that occupy a small fraction of the embedding volume
are called thin fractals (to be contrasted with fat fractals in §5.5). Mathematicallv.
thin fractals are detined as sets possessing zero volume: in practice. this volume
15 positive but small because of the tinite inner cutoff scale. We are justified in thinking
of the dissipative =et ax a thin fractal because its volume/area ratio ix vanishingly
~mall at suthiciently high Revnolds numbers. Needless to say. the turbulent non-
turbulent intertace 13 a thin fractal also.

5. Miscellaneous aspects

In this section. we shall briefly discuss several aspects of turbulence that ma:
usetully be associated with fractals.

5.1. Fractal dimension of interfaces in the developing region

[f we consider as an example the flow past a circular cylinder. the interface between 1
the vortical and non-vortical regions in the immediate vicinity of the cviinder 1s
vxpected to be a classical surface (because of the more or less regular vortex shedding).
and the dimension will then be 2. This expectation will hold even at high Revnolds
numbers except that it will be confined more and more near the “origin " of the tlow
Far downstream. we have shown the dimension of the interface to be about 2.4. which
means that in the developing regions the dimension goes up from 2 to about 2 4. We
have not made extensive measurements in this region. but scattered measurements
(by imaging methods in jets and line cuts in wakes) confirm this suggestion.
Naturally. the range of scale similarity is shorter.

5.2. Evolution of material lines in grid turbulence

To motivate the discussion here. it is convenient to refer to a “classical fractal. like
a Koch curve (Mandelbrot 1982, p. 42). Iterations of the tvpe shown in figure 20 on
the sides of an initially equilateral triangle will produce smaller and smaller scales:
the results of three iterations are shown. The fractal dimension of the boundary of
the asymptotic object - the so-called Koch curve — can easily be deduced from its '
definition to be log 4/log 3. The relevant point here is that the length of this Koch ‘
curve increases exponentially with the number of iterations.

Suppose now that we place a patch of ink in a field of turbulence. The effect of
turbulence dynamics. which is to distort the ink patch in a manner visualized
schematically by Corrsin (1959). can be thought of as being equivalent to a
repetitively occurring iteration scheme (according to some complex algorithm). pro-
ducing smaller and smaller scales at each iteration. If this is so. the perimeter of the
ink blob should increase exponentially. Mundane experimental difficulties have so far
prevented us from demonstrating this expectation. However. we have examined a
somewhat similar question of the growth of material lines in a turbulence tield behind
a grid. We generated lines of fine hydrogen bubbles in the developed region behind
A a grid placed in a water channel. and measured their length as thev propagate
downstream. Their true lengths have been measured by obtaining two orthogonal
projections simultaneously (placing a mirror at 45°): the procedure is explained in
the Appendix. Corrsin & Karweit (1969) had earlier measured the increase in length
of hydrogen-bubble lines, but their method was indirect and used an equation
(Corrsin & Phillips 1961) relating the length to the namber of cuts experienced by :
sampling planes making all angles with the axis of a statistically axisymmetric line !

Vs a4 a R

D

- - - e e "e Lt Y r PSR . - . . . ~ - .

,-..".'-4’.\{",‘- .-f'f.*'f\vf'ﬂ. :- ;(:{;’Jn" 'v'( b Ipf'\if-‘l-\w‘: ’\" ‘-l"'l' -l')d'\f\.l'- ’\’ﬁ.‘: » :: “wﬁ.ﬁ"*'“ (
{3 Iy [} Pa A% L) 3 23 i3 ' e L3 h i . o v ¥ g * i v ol 0



.

M

X

,. 380 K. R. Sreenivasan and (. Menervan

.

N\

v > g

) 0 1 2 3

&l

[¥]

' Generator
Initiator __/\_

0 1 2 3

“
-
.
N
i
o
»

1st iteration 2nd iterauon 3rd iteration

FictvRE 200 The iteration scheme for a triadic Koch 14land (Mandelbrot 1982) to be performed on
an equilateral triangle (the so-called imtiator): in each iteration the wides of the trniangle are
restructured according to the scheme shown on the upper right. The objects resulting from the first
three iterations are shown

clement. It is gratifving to note that the two estimates agree where thev overlap
{tigure 21). Clearly. except initially and in the last stages. the growth is indeed
exponential. The initial behaviour is not expected to be exponential (Batchelor
1959). and the final levelling off is most likely due to the inadequate resolution of
length measurement.

3.3. Velocity signals

Figure 22 shows the temperature signal taken on the centreline of a slightly heated
axisvmmetric jet {Sreenivasan el al. 1979). The most striking feature of this signal
is the sharp ramp-like structures upon which the small structure is superimposed.
Admittedly. this signal is carefully chosen to emphasize the point. but it is not
statistically untypical. The temperature and velocity (especially normal component)
signals in the boundary layer (even in the non-intermittent parts, see figure 11) show
similar behaviour, although not as dramatic. The conclusion is that the fluctuations
do not randomly jump about from one level to another. but gradually build up to
a level from which they suddenly depart rather sharply. This behaviour is consistent l
with a power-law behaviour. which is symptomatic of self-similarity (and thus
fractals). Following Lovejoy & Mandelbrot (1985). if we artificially construct a sum
of randomly placed rectangular pulses whose width w obeys an inverse cumulative
distribution Pr(w > W) x W™} and their height is £u!*. the sign being randomly
chosen. we can construct signals that show qualitative semblance to those shown in
figure 22: here a is a characteristic exponent.

One useful comment relates to the expectation (Carter et al. 1986) that the
turbulent signals themselves are fractals. This is obviously net a simple concept
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Fro.t'RE 21 The average material hne length as a function of the downstream distance from the

urtd The circles are the data of Corran & Karweit 11969, the tnangles the present For both
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FIGURE 22. A temperature oscillogram in an axisvmmetric heated jet. obtained in the region ot
. maximum production of turbulent energy. Intermittency factor = 0.93. The sharp jumps associated
with AB (for instance) have been a subject of much study

because any dimension calculations depend strongly on the scales chosen for plotting
the velocity signal. For example. if the signal is expanded to scales comparable with
Kolmogorov scales, the signal looks very smooth leading to a dimension close to
unity. The expectation is that the signals are seif-affine fractals. by which we mean
that there are more complex scaling behaviours (invariance under transformations

of the type S(x,. x,.....x;) =S{ryr,. ryx,.. .. rix;). where all the r are different). and
our work in this direction is continuing.
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P

3.4. Higher-order dimensions

For the fractal description to be complete. one should be abile at least to distinguish
between two different fractals which may have the same dimension. Higher-order
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t: dimensions are defined for this purpose (Hentschel & Procaccia 1983 Mandelbrot |
. 1986). a ive ; .
:.'. 6). and are given by | log £ g )
a q =lim ) (5.1 ‘
, v 4™ g—1 log ¢ !
where p, ix the probability of tinding points of the set in the ith box of length . For |
v high values of ¢, D, indicates the scaling behaviour of the more “concentrated’ |
2 regions: for low ¢. the character of the more “sparse” regions s quantiied. We have ;
t: calculated these dimensions for several values of 4. and these do display (as will be \
by reported elsewhere) global characteristies similar to many strange sets discussed. tor ;
j example. by Halsev ¢t al. (1986
3.5 Fut fractals and turbulencs
) At this stage. 1t s interesting to make some tentative connections between turbulence
. and what have been called fat fractals. In the literature. there 15 no apparent
o agreement on the precise meaning ot fat fractals (contrast Umberger & Farmer 1955
&

with Grebogy «t al 1985). and this has to some extent dampened our own pursuit in
this direction. At a basic level. however the meaning ot a fat-fractal <et 1s that it
accupies a finite volume (the box-counting algonthm applied to this set vieids the
dimension of the embedding space). but its boundary s a thin fractal. A possible
example of a fat fractal s the <et of all points in figure 3 where the smoke
concentration 1s above a prescribed threshold o if the threshold properly sets apart
the turbulent and non-turbulent regions. the “skin’ of the set 15 the interface whose
dimension we have already measured in §2 Using a suitable integral of the measured
intermittency tactors in several standard turbulent Hows, we have obtained rough
estimates for the volume (say within the region 17 < 0.99 7 ) occupied by the
turbulent zone. The fraction of volume 1s about 0.3 for circular jets (with or without
coflow). about b 6 tor plane wakes behind circular eyvhinders. and about 0.75 for the
two-dimensional bounary lavers in constant pressure. The somewhat larger value -
in the last case 18 consistent with the decreased intermittency near the wall

The same argument can be extended to the set of points in space where a veloaty
component (see §3) 18 greater than a prescribed threshold u,. The “skin™ of such a
tat fractal is the u, 1s0-velocity surface

¥
3,

|l o

6. Concluding remarks

We have shown that there are several facets of turbulent flows possessing fractal-
like behaviour. We have measured fractal dimensions for some of them. The fractal
dimension is only one measure of the properties of a fractal set. albeit the most
important one. and higher-order dimensions (mentioned in §5.4) will help in
specifving the fractal more completely.

It i3 necessary to remark that the present work falls far short of proving that
“turbulence is fractal " without need for qualifications and reservations. As discussed
in various sections. the qualifications arise partly because of the limitations of the
techniques employed: these can (and should) undoubtedly be bettered tn the next
generation of experiments. But it seems to us on the baais of the present measurements
that turbulence (except perhaps for the dissipation tield) genuinely loses its fractal-
like behaviour when viewed on very long timescales. Thus. turbulence is perhaps
a collection of a number of fractals each of which is slightlv different. We think that
this view can be reconciled roughly with the view of turbulence now in vogue as an
ensemble of semi-organized motions.

N 2 W N % =
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While there is not much question that this work is interesting. its usefulness in
hetter coming to grips with the hard issues of the “turbulence problem " is less certain
In this context. we might interpret the “turbulence problem ™ to mean the following
given the various fractal dimensions of several of its facets. how mayv one reconstruct
the turbulent How that generated them / We know of no serious enquiry ot this sort
heing done in the context of turbulence. although some beginnings seem to have been
made in a broader setting (Barnsley et al. 1986). Unless this issue is addressed. it
1% not clear how fractals will advance our understanding of turbulence dynamies In
fact. contrary arguments have often been advanced. A case in point i the dexcription
of the dissipation field. [ts traditional description via either vortex lines. tubes or
hlobs. it is said. ix physically more appealing than its new description as a thin fractal
of dimension 2.7, Actually. this point of view is not quite correct because a satistac
tory deseription via vortex elements that i in complete consonance with measure
ments has never been attained (Kuo & Corrsin 1972)0 At any rate. fractals mas
deseribe the geometry of turbulence (keep in mind all our disclaimers at differein
places'). but geometry and dynamics do not have a one-to-one correspondence

[t ix appropriate to contrast the measurement difficulties in obtaining fractal
dimensions in physical space with those in phase space. Even engineering Hows o
low Revnolds numbers) possess attractors with fractal dimensions (Sreenivasan
19%6). but their determination becomes extremely difficult and uncertam as the
2evnolds number inereases. In contrast. the determination ot fractal dimensionsn
physical space becomes more definitive at higher Revnolds numbers.

As a tinal remark. we note that numerical work of the sort initiated by Chorin
(119%2). dedicated to questions on the dynamice evolution of vortex elements. will ao
some way in establishing possible connections between fractals and turbuienee

Our thanks must extend to David Aronstein who, as a summer student. Lad the
groundwork for part of the work reported in §2.1: to William van Altena tor allowing
ux the use of his digitizer: to Paul Dimotakis for his permission to reproduce tigure
4 and for his penetrating comments on an carlier dratt: to Benoit Maadelbeot tog
commenting on the manusceript, and for providing the necessary impetusn the carly
~tages of this work more than three vears ago by refusing to belicve KRN s negative
conclusions of that time: to a number of colleagues (especially W Van der Water
Celso Grebogr Rick Jensen. and BT Chu) whose encouragement we received at
vartous times. to Mark Lee and Paul Stevkowski for carctully readig the
manuscript and commenting on it: to Ted Lynn for cheerfully putting up withainter
ruptions to his own boundary layer work: to Jim MeMichael who encouraged its
pursint under an AFOSR grant. The last stages of this work were supported by the
National Sewienee Foundation.

Appendix: Growth of material lines in grid turbulence

A small water channel was used and lines of hydrogen bubbles were produced at
2 M = 1% behind a turbulence generating grid (solidity = 0 42 mesh size 3y
Downstream. a mirror was placed at an angle of 45° with the hornzontal dircetion
~o that w camera placed dircetly over the How could simultancousty take pretures ot
two (perpendicular) projeetions of the same hydrogen bubble hine By diseretizing
both hines and some simple togonometrie refations, it s then casy to determine the
tead length of the line in three dimensions

Nuppose we have two projections 2 and 2, (see tigure 23) ofac e i space and
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Ed P 1‘,\
SRSt | |
/' .
r H \ G [
"\}b I '
F
dx £
2, —— - ,’1}
4
/
2,
oY ded
D lc
A B
| |
| }
ABFE = shce of 2, I, = AC. ly = AF.
de = AG. dx = AB = EF = DC = HG
ABCD = shce of 2, 2, = € BAC 1, = < BAF
4= < CAG

Frovke 23 Orthogonal projections of a line ~seyment and defimtion of angles and Lines

diseretize them in equally spaced columns of width de. From figure 23, the follow iy
relations can be inferred
e =1 conay =1, cosa,,

decongt =1,
desing =1, sina,

Thus. tanyg =1, sinx,/!,.

Finallv. by expressing de as a function of dr and both angles. we get

dr

e = COSZy coslaretan (cos x, sin Ty /CON 2y))
By measuring the angles x; and 2, in cach column of the diseretized projections and
adding all the computed de. we get the real length (up to an accuracy of dr) of the
linein three dimensions.
This was repeated for lines at several distances from the grid . resolution problems
and fast diffusion of the hydrogen-bubble lines prevented us from analysing data at
large distances,
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TRANSITION INTERMITTENCY IN OPEN FLOWS, AND

INTERMITTENCY ROUTES TO CHAOS

K. R SREENIVASAN and R. RAMSHANKAR
New Haren, CHons2a s

Conrer tor Applied Mechamos, Yale Unirersin

The snternptent mransivon o turbulence inoopen Bows tmandy pipe flowsy s cvamened in the content of nicnmetenoy

toutes too chaos Prelimnnary condlusions

Heomiplen

are that some quanbitative connections can be discerned
Inwosoilar manner. connections with phase transition and other cntical phenomena aie alse

but thiat they are

mpctfoct Same

measuternents which we hope will be helptul oo deselopine alternative models descrbing the essentals of thic phenomenon are

ducnbad Some dithicaltes are tughhzhied

1. Introduction

This paper s o part of an overall eflort related
10 the exploration of quantitative connections be-
tween chaos i dissipative dvnamical svstems on
the one hand, and transiion and turbulence in the
wo-called apen flow svsems on the other. Open
flows by detimtion possess a preferred direction,
and there s a fluny of mass across its boundares,
AU deast n some crcumstances this elementary
feature of open flows renders the nature of How
mstabilitn comvective, as opposed to bemg ab-
solute, which as the case observed i closed tlow
svatems This can have profound conseguences on
the ongm of wrbulence 10 open fow systems,
which may in turn render our task quite difficolt.

It has been known for over a hundred vears
noew 1] that transiion to wrbulence in pipe flows
occurs antermittently . For example, the velocity
measured on the centerline at a tixed axial loca-
ton i the pipe s typacally as shown m tigs 1oTos
this internittent transtiion to - turbulence that s
our concern here: With aincrease 1n Revnolds num-
her the fraction of tme that the flow s the
turbulent state increases, until eventually the flow
is contnuoushy turhulent. One observes quahta-
el simnlar intermittenes i the advanced stages

of tansition o turbulence i boundary lavers (lig

OIGT-2TRG 860 S0 s

tNorth Holland Physics Publishing Division)

REATAT ALY AT AT A N ATA VAR AR RS AR AR TI AR A N S A AT A

2). and channel (el plane Porseulliey flons: to
which also we shall make a brief reference here
Equally well known now 18 that many low-
dimensional dvnanucal svstems approach a chaouc
state in an intermuttent fashion. qualitativels simi-
Jar to the internuttent transition to turbulence Just

4000
3000
000 Llaminar st te
e
\
000
streamwlse
velocity of
wooo |
000 4
tutbulent state
5000
—y e — ey —
4000 700 w0 500 %0 000
time

Fig 1 The streamwise tor avialy veloaty measured as g fung

non of tme on the centerhine of a pipe flow  The measunng
tool 1v g standard hot wire operated on g constant temperature
mode The signal osallates apparently randemly between an
cosentially steady laminas state and o turbulent state For oy
given anial position, aveloats trace obtamned smultancoustv at
another radial positon will show a0 coinadent atternation
hetween the two states. but the ampltude difference between
the two states 1~ a function of radal positon Both the ordmnate

and the absoisag are drawn toarbitiars scales

Flsevier Scrence Publishers BV
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AR S and ROKoncnons

b O Teect s ciocy o taat cns o the advancod e

St Sonnce et

discussed Frgo 3asan example. The Lorens equa-
tons 2], the Togisue map 3] and the RCE osal-
Lator 4] are some of the other simple examples
Pomeau and Manneville (Shidentitied three generic
mtermitteney toutes which they called Tvpe L
Ivpe 1 and Ivpe T each dittening from the
ather m terms of how  the aigenvalues of the
Floguet matnn, deseribing the return map hin-
canized around o closed trajectory, cross the unit
cirdle. Type Finterniitenay occurs when the inear
ctabiliy of the Tt ovele s fost by an eigenvalue
ot the Floguet maniy Jeaving the umit arrcle
<1 Type HEwhen the crosang occurs at 1oand
Ivpe T when two complex conjugate crgenvalues
amultancoushy cross the unit arrcle That these
mtermitient routes to chaos are relesant to uad
low phenomena governed by partial differential
cquations has been demonstrated. for example. by
Berge ot ul 6] and Dubois et all [7) o the

“ne ooe o 2900 FRO0 3000 3500 000

1

ton ot e one dimensonal map v vl

pead L oSS far s pot The miap o the
hmecon 24 oan the e called Tape T intermet
tobecant ety ef thes tpe of cntenm ttenaoy
e e mentened i the tent The quabitatsve

Coath B s gqu e obv o

RARA LALLM LA ALEAARLRad A R A AN e el i A ' 0% B e % Dt di gt ate pho ale gl A

N~

tamninar

T S N B T O LR R R St et e

Ravieigh Benard expeniment. and by Pomcau
etal (8] the Belousos Zhabotnsky reaction.

It may be argued on the basts of these interest-
mg tindings that mternuttent transittien in open
ffows mav belong o some hind of uninversahin
classt Byven though as already menvoned open
Hows are ditferent in severdd non-trvial wass from
the highlv contined flows fsee abso [9). 1t ooks
reasonable to ask whether there are any connec-
tions hetween the intermittency routes to chaos
mentoned above and the imtermittency routes o
turbulence i open lows Av we shall see. the
process imvolved in the latter are more complex: it
i~ to thar partial charactenization that thes paper

I~ devoted

2. The physical phenomenon

[t s usetul o recapitulate brietlv the phyvacdd
mechanism responsible for the temporal internut-
teney observed in hgs T Eadence from our own
work at least i pipes whose dength v of the
order of a few hundred diameters as well as that
of others tehietlv Whgnanshr and Champagne.
[0, suggests that “disturbances’. whose devel-
oped state corresponds 1o the turbulent regions in
the mtermuttent signal, arse locally an radial,
azimuthal as well as awvial directionsy i the en-
trance regron of the pipe where the flow s faminar
and steady. and s not fullv deseloped isee fig 4
Once created n the boundary laver region. the
disturbance gquickIv spreads over the entire cross:
section of the pipe. and moves ke an independent
entits within the pipes laninar regrons are present
both upstream and downstream of this enuty
which now goes by the name “sug” ¢ They have
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becn Called lashies ot turhulence” by Revnolds | 1)

et plues by several workerss tor evample
Foovom U0 A probe nved at any pomi in the
oo altcrnately sees the procession of slucs wath
Ponnar retons anterspensed  between them the
Lt szl consists of anternutient excursions
troms the laminar 1o the turbulent state tollowed
P thie teturn an the Falenan frame of referencen
e some stochastic manner 1o the former the
Plhivac b rcasons tor the return to the Limimear ~tate
are the tollowime Usaally momost pipe lows s
thic Prossate ditterence between the inler and the
ot that as held constant A given pressure dif
ference can support o farger nuess low when the
A~ the

shues tormeand grow. the increased tniction due 1o

thow v Lamnar than when s turbubent

the turbulent How i them produces o reduction i

miass oy

thus mhihiing the mstabihines at the

ilet New Sups are most bkely 1o be born oniy
atter the st slug completels passes out of the
prpes s not hard o wieue similarly that e
nuttent transition can o occur also when the mass
Tux s Ived but momentum vanations occut but
1 s possible that the two ivpes of mtermittencies
donat share the same detaled properties

Corresponding to slugs i pipe ows the trans-
vonal structure i boundaey Levers and i channed
flows iy the so-called wirbulent spat (he by e
ke the stues which are constramed except i the
avtal direction, the boundany Liver spots can grow
moall direcuons g There are some non-tnivial it
ferences between spets i channel thows and
boundary Lavers, but these detads are not relevant
here

Torams out that the speed of propagaton t ot

the deadimy edee ot the see o o spot s ditferent
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- source. Howevero sinee x s relatively large com-
- from the trahing edge speed £, Cicarly, slugs (or pared to v, this 1y believed o be of small conse-
L spotsy grow wath distance ! O, - 0 In the fol- quence.)
" [owing we concentrate on the slugs. 1f the slugs Several points must be made explicit. Both in
are generated at some mean frequency. and f figs. S and 6 (and i the others to follow), x. /1) iy
s > i s nine le That | N
more than one slug resides in the pipe at the same reallv 1. D, where L. 1s the pipe length. That i, AL
] . R e
nme. the leading edge of a slug could cateh up measurements were actually made at the exit of ~
with the trahing edee of the preceding one, result- pipes of different lengths. Although we have re-
mn mierger and g consequent reduction an therr tained the notation v D above i conformity with
passaze frequency with aval distance. These two previous practice. it s not clear to us that mea-
v’ tactors could then provide a plausible mechanism surements made at different axial locations of the
. . .
» tor the streamwise dependence. at any gnen same long pipe will show the behaviors of figs. §
: Revnolds number. of 4l measured temporal quan- and 6 A look at tig. 5 shows that the mean length
¢ ties The two moest important parameters i the of slugs ¢~ L7 1) s greater than the pipe length,
’
problem are thus the Revnolds number Re and suggesting that more than one fully developed slug
the tonormaizedy anial distance « D where D s v unbikely to reside ina pipe at any given instant
> . the pipe dameter. The frequencs of the slugs. for of time. Thus. the probability of merger is quite
g cvample. depends on both of these parameters. as small. The reason for the observed reduction in
. Jrown o te S0A charactenistic value of this the characteristic frequency with pipe length (fig.
- frequencs save the peak valuey vanes mversehy 6) must then be attributed largely to the reduction
! P )
- . . . .
with v iy 6)0and seemis to be independent of of the formation frequeney of slugs with pipe
- the Revnelds number (Strictly, one must plot on length. This makes sense il we remember that
< .
v the ubscissa the quantuitn v v o where v fonger pipes mean longer slugs which take longer
L , .
X vt crin for the stugs, s posable that the to pass the entire pipe. We conclude that detailed
. ~catter e the plot parthe ongimates from this and careful measurements at several stations n
-
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tpresenty. Other svmbols as in fig, 3

extremely long pipes (say. length to diameter ratio
> 10%) is overdue.

As one varies the flow Reynolds number. the
appearance of the intermittent state is quite abrupt.
The intermittency factor y. defined as the fraction
of time the flow is turbulent. appears to vary
approximatelv linearly with the Reynolds number.
By a backward extrapolation to zero of the mea-
sured mtermittency factor, one can define a unique
value of the onset Reynolds number Re,. Fig. 7
shows that vy is a unique hinear function of Re —
Re,, in a certain non-trivial neighborhood of Re,;:
v/ D or £./D s thus an inconsequential parameter
for this quantity.

A reasonable goal now is to describe in phase
space the main features of these processes. Return-
ing now to fig. 1. it appears plausible to think that
the steady laminar state is essentially zero-dimen-
sional  that 15, a proper orthogonal decomposi-
tion ol the temporal signal contains no time
dependent functuon. (Unfortunately. estimates of
statistical properties such as the entropy and di-
mension from the velocity signal obtained entirely
m the faminar state, for example just before the
onset of intermittency, is dominated by the high-
dimensional. low-amplitude noise overriding the
laminar motion. The noise here does not arise
mierely from instrumentation or other *purely ran-

ll'uil\lllvi/l DHerniienoy i l/[h’ll //un Al

dom” fluctuations in the background: as men-
tioned clsewhere [9]. the background "noise’ in
most open flow systems s usually dominated by
large-scale pressure fluctuations which are far from
being structureless.) From this fixed point. the
motion escapes to an attractor representing the
turbulent state. and gets reinjected near the fixed
point at apparently random intervals. Two rele-
vant questions can be asked: 1) Can one quantita-
tively capture by a low-dimensional map the
essential dynamics of this intermittent motion from
the fixed point? 2) What are the characteristics of
the chaotic attractor? Answers to these questions
are attempted below.

3. The route to chaos

Fig. 8 shows a close-up of the vicinity of the
velocity signal near the leading edge of a typical
slu,. Corresponding to the laminar as well as this
interface regions, we have constructed by discreti-
zation a return map of u, |, vs u, (fig. 9). A close
look in the vicinity of the fixed point shows that
the map is much like that from which fig. 3 was
constructed. Secondly, the slope of the return map
near the fixed point is close 10 but greater than
unity. This shows that the fixed point is unstable
once the onset of intermittency occurs; the laminar
and interface regions are thus merely a reflection
of the duration spent in the narrow channel in the
vicinity of the fixed point. There is some hope.
then, that the dynamics of the leading edge inter-
face can be described (approximately) by a one
dimensional map of some kind. for example that
used in fig. 3 (for small x,). This observation
lends some emphasis to our original question of
possible connections to the generic intermittency
routes to chaos. We must right away note a simple
fact: Pipe flows strictly belong to neither type of
intermittency mentioned in section 1. an obvious
reason being that, unlike in the Pomeau
Manneville formulation. intermittent transition in
open flows (see especially fig. 2) occurs from a

steady state and not from a limit cycle. (For a
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Fig. N A close-up of the veloaty signal near the leading edge u ,'.'{!'\.‘:'.",'. A
of 4 typieal shug ) o
Fig. 9. The return map of u, . v~ u,, for the interface region et A
= . . . . R shown in fig. & obtained by the discretization of the signal. -.:an::'.’:_'.)_\;,-.
brief reexamination of this point see section 6.) The origin is the fixed point representing the laminar state. :“.‘-:".-:‘/-::.u:.{-:‘
This mav be interpreted to mean that Poincaré .';f«.‘;;\';s
sections of the Pomeau -Manneville intermitten- Fig. 10 shows a plot of the average length L, of NI NN
. . . . " . : . AL
cies have a direct bearing on pipe flow transition, the laminar regions as a function of Re - Re,,. RSSEERANAN
but it will unfold that this is not the entire story. The data for several experimental conditions all
As we shall show soon. this is related to the tend to show that L, ~ (Re — Re,) . This behav-
non-uniform manner in which the motion in phase ior is common to both Type Il and Type III
space gets reinjected to the vicinity of the unstable intermittencies. The measured inverse cumulative
fixed point. (We take the view that 1o label reinjec- distributions for the length of the laminar inter-
tion by ‘relaminarization’ - as is often done - is to vals (fig. 11) follows the expression
miss the point altogether. While in the Eulerian s e e
. . 1,2 SR
frame of reference one sees an alternation between P(I>1,)~ [e/exp(4el, - 1)] 2, (1) R At oy
) 0 PR O,
laminar and turbulent states. this does not imply ~dn At s
R . i 10000 AR YARE RS
relaminarization of fluid that was once turbulent. N \':_\:;\.":-.}x‘,
As must be clear from section 2, in the Lagrangian <000 AN A
frame of reference. there is no relaminarization of N ]
) ] ; . N A I
fluid entrained by a slug: one is talking merely T \c\\e N AT
. . * oa M »
about the slug /no-slug situation.) * \ \ .'_-\"_-.;\‘_'_,\:-,
. . . . . AR A
All three types of intermittencies mentioned in 1000 .'_\::-.:-.':\:—.
section 1 make definite predictions for certain A
- .. . . . 500 X C) )
statistical quantities of the intermittent signals, \\g A
against which the outcomes of experiments can be S -
200
tested. Apart from the nature of the return maps P"\‘Q -\-::-t&}.“'&
> > Y > . Tty N . -_‘n l'h.‘.h-.l
thcmscl.v'(,s, (h.L |mp()f1ant predictions concern the 10§ btz e T _:_.‘_:-_.,:-_._:‘,.;_.‘
probability distribution for the duration of the It
. . . L. . . Re-Re f\"x .\'f\-‘
laminar regions: from this distribution one can in — .j,»:'(r_ A
) particular calculate their mean duration as a func- v ® -
tion of the departure from the critical value of the Fig. 10. The mean length of the laminar regions in the mea- 't'::*“-"?i
control parameter. Re — Re, here. At any rate, it sured vclom‘ty signals, plotted as a fu.ncuon of the distance 3 .,-"?' '\.'_
) A from the critical Revnolds number. Lines correspond to the "-r-\'(\.P*' o
is useful to measure these quantities in the hope I power predicted for Type 11 and Type 11 intermittencies. .:'F:’:‘.t'.
that they will help us build alternative models. . L/D =435 R, = 4480. Other svmbols as in fig. 5. '1-"'\: v¢
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tre 31 The cumulative distribution of the Taminar intervals
Roe 47250 v 0379, ¢ = 0004, Note that. except for a small
/. the behaviour of 2 s very nearls exponential

which is a result known to hold for Type IlI
intermittency. Here. the parameter e should be
wdentiied  as being  proportional to (Re -
Re,)/Re,. The inset. which is an expanded
log lincar plot shows that the fit is very good even
towards the tail region.

Transition mtermitienc i open flows

In spite of these concurrences. one cannot iden-
tify the pipe How with Type I intermittency for
two reasons. Firstly, the hallmark of Tvpe I
intermittency is the subceritical period-doubling [7].
with the primary effect of nonlinearity being a
dramatic enhancement of the subharmonic com-
ponent just before the tflip to the chaotic state
oceurs. The system. instead of subsequently {ol-
lowing the period doubling route to chaos. some-
how decides to go the intermittency route. As
already mentioned. the nonturbulent state is not a
limit ¢yele. Secondly, and more importantly. in
arriving at expression (1), the assumption has been
made that whenever reinjection occurs from the
chaotic attractor to the vicinity of the limit cvcle,
the distance from the fixed point of a Poincaré
map where this reinjection occurs is uniformly
distributed [12]. We have measured (see Appendix)
the distribution of the reinjection distance from
the unstable fixed point (in this case). and ob-
tained the result that it is approximately an in-
verse power law (fig. 12) over a certain range. The

distance from the tixed point (laminar state)

» SRS ATAT TSR e

\"q.'-,'\ \ YL BN N Sl S ey "-;\ R AT )

X

Fig 12 The measured reinjection probabifity. For a discussion of how this was obtained. see Appendin: The mset which iy a
log lincar plot shows that the cumulative probability for the reinjection distance increases Togarithmically: with the remjection
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log linear plot of the cumulative  distribution
shown in the inset s a less scattered comparison
because of the averaging involved in the integrat-
INZ Process.

This nonlinearity associated with the reinjection
probabtlity adds an additional *dimension” to the
problem. and should be explicitly incorporated in
any model of the problem. Using this empirically
determined  reinjection  probability, 1t s easily
shown that Tyvpe I intermittency also leads pre-
ciselv to the expression (1) for the cumulative
distribution of laminar lengths. This result, to-
gether with figs. 9 and 10, might be taken 1o
inaicate a closer connection with Type 11 It is also
worth recalling that the one-dimensional map from
which fig. 3 was constructed was obtained after
some simplhification from Type [l. Perhaps the
connection is even closer if we realize that a
suitably obtained Poincaré section of Type Il in-
termittency is qualitatively similar to the measured
velocity signals here (figs. 1 and 2).

Before closing this section, we note that. inde-
pendent of the agreement between measurement
i fig. 10 and the intermittency models. the almost
exponential variation of the data (fig. 11) is point-
ing to some simple mechanism of slug generation
(e.g.. a Poisson process).

4. The chaotic state

From traces of the type shown in fig. 1, we have
constructed a composite velocity signal by string-
ing together all the turbulent patches: that is, by
removing the laminar as well as the parts corre-
sponding to the interface between the two states.
For this composite signal, we have calculated the
correlation  dimension using the Grassberger-
Procaccia [13] algorithm. Calculations show the
scaling exponent of the correlation function is
about 18. To the extent that one can trust calcu-
lations resulting in such large numbers and their
interpretation. the dimension of the attractor is
about 18. This relatively high dimension does not
come as a surprise to us, because it 1s consistent

'
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with our experience with most open flow svstems
[14]: for all Reynolds numbers except those very
close to the onset of turbulence. low-dimensional
attractors do not seem to exist. (The number of
data points used in these calculations is not as
large as iy uwsually believed to be necessary for
calculating dimensions of the order 18 reliably.
but far fewer (~ 3000). We have however calcu-
lated the dimension from several independent
patches of the composite signal each of which is
about 3000 points long, and performed ensemble
averaging over these segments. We have found on
other occasions - to be described elsewhere - that
this procedure gives stable numbers. In anv case.
the issue here 1s not whether the dimension is 18.1
or 18.2, but whether it is 2. 6 or 18. The safest
conclusion to draw from here is that the dimen-
sion is nor small, of the order of 5. sav.)

We conclude that pipe flow transition exhibits
partial similarities with known intermittency routes
to chaos — especially with Type I - but it does not
strictly belong to any of them. at least because of
the preferential nonlinearity in the reinjection
mechanism. Although the dynamics appears low-
dimensional on the interface region. it is clearly
not so elsewhere. For this reason. it is helpful to
examine the problem from another point of view.

5. Analogy with phase transitions

As we already mentioned in section 2, the change
of state from a laminar to a turbulent one occurs
in pipe flows essentially discontinuously at an
onset Reynolds number Re,. and at any instant at
a spatial location it is easy to say to which of the
two states the fluid flow belongs. Above this onset
Reynolds number the laminar and turbulent phases
can be thought of as coexisting, with the fraction
of time the flow is turbulent increasing monotoni-
cally with the Reynolds number: in the intermit-
tent regime all the mean flow properties (such as
the pressure drop in the pipe) change continuously
from the laminar values to the fully turbulent
values. Following the lead of Dhawan and
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Fig 13 The measured time-mean square of the streamwise
velovity compared with the sum of v times the turbulent value
tfor that Revnolds numbery and (1 vy times the laminar
value 8 Re = 42140 y = 0871 4 4006, 0720 7. 411000 54: 7,
17740 032 @ KK 043 b 4451, (005 B 4539 D16 For
calibration purposes, completely lanunar values ¢ - ) have abo
been plotted We suspect that this agreement will not hold so
we. o f the eritical Revnolds number is large

Nurasimha [15] in boundary layers. we show in fig.
13 that. at any given Reynolds number during the
intermittent transition, one can express to a good
approximation some measured time average flow
properties (such as the dynamic head on the pipe
axis) as a linear combination of the laminar and
fully turbulent properties appropriate to that
Revnolds number. Noting that the intermittency
factor itself appears to vary linearly with Re — Re,,
(see fig. 6). it is clear that flow properties in the
vicinity of Re, can be expressed as linear com-
bination of the laminar and turbulent ones, with y
replaced by (1 — Re/Re,).

The above description tempts us to explore
possible connections with phase transitions. Since
all phase transitions can be described in similar
terms. the crucial step i1s to identify an order
parameter, which is such that it takes on different
values in coexisting phases, and jumps discontinu-
ously in the course of the phase transition; the
magnitude of the jump is zero at the critical point.
As an example, the order parameter in the
gas liquid phase transition is the difference be-
tween the actual density and the density at the
critical point.
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While many details are not clear and the anal-
ogy has not yet been pushed to its logical conclu-
ston, one can identify an order parameter with the
(normalized) difference speed AU between L), the
leading edge speed. and U,. the trailing edge
speed. of the slug or the spot. Fig. 14 shows that
in all Hows in which AU has been measured to-date.
the relationship

holds quite well in a nontrivial neighbourhood of
Re.. where Re, 1s a “critical’ Revnolds number
akin to the critical temperature in the gas -liquid
phase transition. It is surprising that this should
be so. considering that the four flows studied in
tig. 14 are quite different in detail: they range. on
one extreme. from spots which grow in all direc-
tions to slugs on the other extreme which are
constrained in all but the axial direction.* We also
find it very interesting that the ‘critical exponent’
must take on the classical value of 0.5.

For the boundary layer. Re. = 200 according to
fig. 14. This suggests that attempts to create sus-
tained spots below Re, must necessarily fail be-
cause, interpreted literally. fig. 14 suggests that the
trailing edge should then travel faster than the
leading edge. If this does occur we would have on
our hand a case of relaminarization but, in reality,
spot-like structures below Re, will break up and
decay. To our knowledge. detailed tests relating to
this issue have not been made. In the literature on
spots. we have found no documentation of spots

*For all cases but that involving boundary layer spots. a
lincar fit between AU and (Re - Re,) is not unthinkable, but
the fit (2) is a bit better when Re — Re, is not too large. Also,
we believe that the departure from (2) in fig. 14d. for example,
is largely due to the fact that the flows were generally set up in
pipes which were not long enough for the fully developed
parabolic state to emerge. This means that the leading cdge
speed of the slug. which is essentially equal to the largest speed
anywhere in the flow field. cannot be as high as it would be if
one had a parabolic distribution of velocity ahead of the slug.
Data from Alavyoon et al. [31] in plane Poiscuille flow became
available too late for inclusion here, but they follow the
cquation AU?=0.727x 10 * (Re ~ 800): the fit appears as
unambiguous as for the boundary layer data of fig. 14(a).
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Fig. 14, The difference between the propagation speeds of the leading and trailing edges of the slug as a function of the flow
Reynolds number. (a) Spots in a two-dimensional boundary layer: Re is based on the freestream speed U, and the displacement

thickness. The normalizing speed for AU s U, .

x . Cantwell et al. [24]; +. Wygnanski {18]: O, Zilberman (sec Wygnanski [1R]).

Since Reynolds number (no matter how defined) increases with streamwise distance in boundary lavers those used here are the
Revnolds numbers at which spots were created. - —, 3.65 x 10 * (Re - 200). (b) Spots on an axisymmetric body. When the spots
grow to sufficient sizes, they wrap around the body. Data from Rao [25]. ---. 5.6 X 10 * (Re - 2500): Reynolds numbers are based
on the boundary laver thickness. (¢) Transitional structure in a rectangular pipe, aspect ratio 4.0; Revnolds numbers are based on the

hvdraulic radius. Data from Sherlin [26]. -
present. -
Champagne [10].

generated below Re.. the lowest such Reynolds
number being around 210 due to Elder [16]. Al-
though Elder did not make specific claims that
spot generation attempts below Re, were unsuc-
cessful, the absence of any documentation con-
trary to our conclusion must be deemed to be
significant. Similarly for pipes attempts to gener-

e L ®
+

L

o
'™ 2, ) Mo L L) )

LS50 %10 4 (Re - 1240); (d) Slugs in circular pipes. Data from one experimental run,
,2.56 % 10 4 (Re - 2350). Similar data have been obtained by Lindgren [27], Pantulu [28]. Coles [29] and Wygnanski &

ate slugs below a Reynolds number of about 2400
are known to be unsuccessful.

We draw attention to two minor matters. First,
the constant a in each of the four flows is of the
same order of magnitude when proper account is
taken of the differences in the definitions of the
Reynolds number and different normalizing speeds
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used in AL Second. the rate of spread of the
spanwise extent of the spots (the “width’) in con-
stant pressure boundary lavers is onlv a weakhh
mcreasing function of the Revnolds number. (It
goes up by about 20% in a Revnolds number
dutfering by a factor of about 3 i the experniments
of Schubauer and Klebunof! [17). and by about
halt as mach i a similar Revnolds number range
i Waenanski's 18] experiments.) Not enough data
cuint on the Revnolds number dependence of the
arowth of the spot height normal w the plane.

W should remark on the ikelihood that the
expression (2) may sigmity nothing more than a
characteristue shared by propagation fronts in di-
vense arcumistances, where a power-law usually
deseribes the relation between the propagation
speed of the front and the distance from ihe
cnbical value of the control parameter. Some ex-
amples are the speed of propagation of the turbu-
lence front produced by an osallating gnd in a
tank of stull water [32]. the speed with which the
upper (lower) surface vortex propagates into the
fower (upper) vortex in a short aspect ratio (= 1.25)
Tavlor Couette apparatus housing only two vortex
rolls [19. 20]. the propagation speed of solidifica-
tion fronts in dendritic growths [21] the speed of
the so-called “directed lattice animals’ in percola-
tion theory {22}, ete. Even this is an interesting
enough conclusion.

6. Discussion and conclusions

The behaviors described so far are not strictly
applicable for large Re — Re,,. For example, as the
intermittency factor approaches unity, increas-
ingly larger departures occur between expression
(1) and the measured probability distribution of
faminar regions: similarly (2) is violated for large
values of Re — Re.. This in itself is no serious
detraction. since all *universality theories” aim to
explain only the region immediately after the onset
of intermittency. We want to emphasize one fur-
ther point. For certain combinations of experi-
mental conditions which are poorly understood.
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conditons different from those of fig 1T Untortunatelv . the

ditlerences are not documentable in detanl

the alternation between the two states oceurs regu-
larlv (fig. 15)0 the distribution of the laminar
intervals in this case obviously  peaks sharphy
around some value. This last fact serves as a
reminder of the complexity of the process involved.
Further, even restricting to what one might call
the generic features of this transition process. it
should be clear from section 4 that the dvnamics
does not entirely reside on a low-dimensional at-
tractor.

Nevertheless. several common features exist be-
tween pipe flow transition and purely mathemati-
cal models like one-dimensional maps: further
work is needed to be completely certain of this, as
well as about possible analogies to physical
processes like phase transitions. In any case, a
more realistic model than the existing ones need to
be invented to duplicate the observed facts in
detail. We think that a suitable modification of the
Rossler equations [23] may serve this end to some
extent.

One of our contentions has been that transition
in the examples studied here occurs intermittently
between a steady state and a chaotic one. In
particular, the laminar regions do not correspond
to any periodic states, as is especially clear from
fig. 2. It may. however, be of interest to recall that
in the experiments of Schubauer and Klebanofl
[17] the first-born spots are generally accompanied
by an undulating (nor steady) laminar state, but
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once a newly born spot sweeps by the tud. it
produces a Ccalming  cettect” that subsequenths
chnminates the undulations i the Tanunar state

Finallv. we must remark that the standing of
the conclusions of this paper s only prehminary
unless substanuated by measurements mooes-
tremiely long pipes (fength o diameter tatios well
m exeess of 104 i which the mass luy (mstead
of the usual pressure dropy s held constant We
beheve  that such an evpenmmental  effort s
worthwhile. Pipe flows are fasamanng alse be-
caune they provide counter esamples to the com-
monh observed  bifurcations. as well 1o mam
beliets usually held. m dvnamical systems. For
example, Tnoise-free” pipe flows are stricty stabie
at atl Revnolds numbers, which clearhy regquires
the presence of sustamned noise for mitating tran-
sition: it s therefore not clear to what extent the
mtermttency statistics reflect the statistical prop-
erties of the noise itself. In contrast to transition
to turbulence in convection problems (for exam-
ple). much less appears to be known about the
ivpe of “metastable’ transition observed in pipe
flows, The purpose of this paper is more than
adequately served 1f it brings these problems to
the attention of a wider audience than  that
customarilv involved in them.
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Appendix

Transition from the turbulent 1o lamimar state s
very sharp as can be seen o fig. (1t is i fact

a
0 500 000 1500 2000 2500 3000 3500 00O

time, t

2000

D.l;
~ o
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1T 7T

- 1000 ¥

=

—_— ———

) b

o] 500 1000 1500 2000 2500 3000 3500 4000

time, t

P 16 The pper trace (a) is g veloaty trace which, when
modibed as deseribed i the text and differentiated. vields the
lower trace thy

sharper than the transition from the laminar to
turbulent one.) It thus seems reasonable to assoct-
ate reinjection with sharp velocity gradients. Hence
a numerical differentiation was performed on the
time trace. after substituting the turbulent state by
a constant. say. 500 on the ordinate of fig. 16a.
This moditied signal u. when differentiated. fooks
as in fig. 16b. The reinjection point is then iden-
tified as the distance from the reference faminar
state where the largest velocity gradient oceurs.
(Other plausible definttions vield much the same
result.) Fig. 12 was obtained after rescaling the
distance.
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An instability associated with a sudden expansion in a pipe flow
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(Received 21 June 1983; accepted 27 July 1983)

An instability characteristic of a fully developed laminar low encountering a sudden expansion in

a circular pipe is briefly described.

Consider a sudden expansion in a circular pipe shown in
Fig. 1. A hot wire located on the centerline some distance
downstream of the sudden expansion will register, beyond a
threshold value of the Reynolds number, oscillations of the
type shown in Fig. 2. The regularity of these oscillations is so
remarkable, and their general repeatability so good, that a
brief exploration of the phenomenon seemed worthwhile.
This letter is a short report of a preliminary effort.

In our initial setup, oscillations which would appear at
a threshold Reynolds number R, (based on the upstream
section average velocity (U ) and the upstream pipe diameter
d,) of about 1500 would disappear completely when R, ex-
ceeded a value of about 1700. Also a 0.24 mm diam needle
inserted along a diameter through a hole slightly upstream of
the expansion would destroy the oscillations everywhere in
the pipe; removing the wire and resealing the hole with
scotch tape (for example) would restore them exactly. On the
other hand, a slightly thinner wire (0.17 mm diam) would not
at all affect the occurrence of the oscillations.

It is soon realized that the 0.24 mm needle was of suffi-
ciently large diameter (Reynolds number based on the maxi-
mum velocity in the upstream pipe and the wire diameter
~48) to shed Karman-Bénard vortices which could indeed
be observed. These vortices were probably of sufficiently
large magnitude to prevent the oscillations (for reasons to be
explained below) from occurring. The 0.17 mm wire shed no
vortices—the wire Reynolds number of 35 being lower than
the critical value of about 40 (Ref. 1}—and would leave the

dl
= JE:J_':' —
g —_— = I

FIG. 1. The experimental configuration.
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oscillations quite intact. In fact, we found that fairly low
levels of turbulence created at the expansion would disrupt
the oscillations totally. This immediately suggested to us
that the disappearance at R, = 1700 of these oscillations had
to do with the upstream disturbances whose residue at the
expansion remained sufficiently strong for destroying the
oscillations mentioned earlier. We then built a new pipe of
the same nominal dimensions but with more carefully de-
signed inlet conditions having a significantly lower distur-
bance level. For this setup, the oscillations at a certain axial
location appeared at around R, = 1500 as before, but per-
sisted in varying forms up to at least twice that value.

FIG. 2. Oscillations seen by a hot wire located on the pipe axisat x/d; = 11.
Corresponding experimental conditions are R, = (U)d,/v = 1500,
d, =0.635cm,d, = 1.27cm, and L, = 425 d,. The uppermost trace is the
unfiltered signal, the midtrace 1s low-pass filtered below 10 Hz, the lower-
most trace being high-pass filtered above 10 Hz. Most of the fluctuations
seen in the last trace are below about S00 Hz. Time scale: from left to right of
figure, 4.8 sec.
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FIG ¢ Flow sisuabizaton results for R In0 In u the preandown ot
the oncoming Jyve streak cccurs downstream of the mark indicated by 'h:
arrow. while tn b this hreakdown accurs upstream o the mark Inoo s

seen that a needle pluced just apstream of the expansion anchors the break
down point

lation along the pipe. Thus, if one concentrated at a fixed
observation station along the pipe axis isuch as the mark in
Fig. 51, one would alternately see an unruffled dyve streak or a
situation 1in which the broken-up dye streak filled the entire
cross section. An unruffled dye streak at the observation
station implies a velocity there that is characteristic of the
jet-like oncoming flow from the upstream smaller pipe
whereas, once the reattachment occurred, the low would fill
up the entire pipe thus reducing the average velocity. This s
essentially what makes a hot wire record (as in Fig. 2} two
different levels of velocity with periodic alternation between
them. In fact, we noticed that the upper level of velocity in
the oscillations of Fig. 2 corresponded roughly to the center-
line velocity in the smaller upstream pipe, while the lower
one corresponded approximately to the average velocity that
would result if the flow coming out of the smaller pipe filled
the entire downstream pipe uniformly. Further, it may be
seen {cf. the uppermost trace of Fig. 2) that the upper velocity
level is essentially laminar-like, while the lower one is some-
what turbulent-looking, reflecting the fact that the lower lev-
el in the velocity oscillation of Fig. 2 represents a turbulent
situation downstream of reattachment.

Why does the reattachment point oscillate back and
forth so regularly? The answer probably lies in the complex
interaction between the velocity field downstream of the ex-
pansion and the oscillatory pressure field further down-
stream. Presumably, the velocity distribution downstream
of the expansion would be nearly parabolic in the core, but
would be surrounded by a region of reverse flow. The result-
ing complex velocity distribution has several inflection
points, and is obviously prone to instabilities which are quite
possibly excited in phase by the downs:.ream pressure field,
thus providing the mechanism for the regularity of the oscil-
lations. These instabilities grow and eventually lead to the
breakdown of the flow at some point downstream. When this
occurs, the turbulence that develops and the consequently
increased pressure drop would shift the reattachment point
upstream. One may surmise that this upstream shift of the
reattachment point would restore the stability of the flow by

2768 Phys. Fluids, Voi 26, No 10. October 1983

altenng its velocity distnibution just enough, so that the reat-
tachment point would mosve downstream to its onginal posi-
non; this self-perpetuating act repeaty itself

Inserting a small wire shightly upstream of the expan-
s1on [see Fig Sic), where the head of the needle can be seen),
which in the air experiments had the effect of destroying the
oscillations, always resulted 1in a premature breakdown and
reattachment of the low at aound 70 4 Disturbances
Decause of the wire upstrearn, of any other arttficially creat-
ed disturhance, would hasten the breakdown by bypassing
the normal osallatory growth stage. and anchor so well the
reattachment pomnt at around vd_ -~ 4 that, upstream of
this point, the low would simply be a laminar “jet” of fuid
coming from the upstream pipe. Here, a hot wire located
along the pipe axis would continuously record very nearly
the peak velocity 2¢07 5 in the upstream parabolic distribu-
tion. whereas downstream of this point. it would simply re-
cord continuously the lower selocity corresponding approx-
imately tod,7d. L

Now we mayv note a few vagrancies of this flow . Under
nominally identical aircumstances, the veloerty trace would
sometimes deviate in shape from that shown in Fig. 2. For
example. the ime spent in any cycle in each of the two states
discussed above could be unequal «t.e., the duty cycle of the
signal of Fig. 2 would be different from 0.5); or, the velocity
would not be constant in the upper and lower states but very
gradually isee. for example, the lowest trace in Fig. 3). Some-
times, the small-scale oscillations superposed on the upper
state see the lowest trace of Fig. 3) would not be easily dis-
cerned. We found that small levels of turbulence or some
asvmmetric constraints imposed at the expanston would des-
troy the phenomenon or alter 1t to varying degrees. The ex-
traordinary sensitivity of the phenomenon to these various
details, and the narrow range of Rey:olds number within
which it seems to occur unless special care is taken, may well
explain why it has not been noticed before. However, we
believe that it is not an uncommon phenomenon altogether:;
for example, something similar could be occurring down-
stream of a sharp orifice in enclosed flow measuring devices.

Finally, we might mention the practical relevance of the
sudden expansion configuration in the context of ram jets
and dump combustors.
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FIG. 3. Development and growth of the osaillations along the pipe axis
downstream of expansion. From top to bottom, the oscillograms corre-
spond to x/d, = 58,7, 8,9, 10, and 12, respectively Signals low-pass fil-
tered to 10 Hz Unfiltered signals at x/d. of 5.8 and 7 are no different from
the filtered ones: at other x/d.. however, the signals do develop an increas-
ingly higher frequency content. Time scale: from left to right of figure, 4 «ec

Figure 3 is a record of the development and growth of
the oscillations along the pipe axis. It is immediately clear
that they are not the result of oscillations in mass flux (for, 1f
they were, they should be seen with nearly the same ampli-
tude everywhere axially), but must be characteristic of an
instability of the oncoming flow. For x/d, =4, no natural
oscillations are seen; they can however be excited artificially
by giving, for example, an impulsive but smait motion to the
hot-wire probe. This is sufficient to trigger oscillations (aris-
ing probably from probe-flow interactions) which may ei-
ther decay with time [Fig. 4(a)], or grow into self-sustained
state (Fig. 4(b)] depending probably on the initial amplitude
of the impulse and the precise location of the probe in the
flow. In certain cases, the oscillations grow to a saturation
amplitude, decay abruptly to smaller amplitude, and build
up again [Fig. 4ic)].

2767 Phys. Fiuids, Vol 26, No 10, October 1983
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FIG 4 Aruficially tnggered oscillations at x/d, = 4.5. In (a) the oscilla-
tions eventually decay, while in (b}, they build up to a self-sustained state. In
¢i. they grow inttially to a saturation amplitude and then decay abruptly
before growing again The cycle repeats indefinitely. Time scale from left to
night of figure, 50 sec

To better determine the nature of these oscillations, we
set up a simple flow visualization experiment in water. To
eliminate the possibility that the dye-introducing device
placed upstream of the expansion would produce enough
disturbances to destroy the flow oscillations, we introduced
the dye at the inlet to the smaller pipe itself upstream of the
contraction (as in the original experiments of Reynolds?).
The contraction (area ratio = 150) would damp out the dis-
turbances produced by the dye-injecting needle to sufficient-
ly small magnitude so as not to be disruptive to the process
that resulted in the oscillations in the first place.

The dye streak downstream of the expansion would re-
main straight and smooth for x/d, of the order of about 5,
apparently unaffected by the expansion. Thereafter, it would
develop rapidly growing oscillations [see Fig. S{a) and com-
pare with Fig. 3], and would abruptly break down at some
point depending on the Reynolds number; when this break-
down occurred, the dye filled the entire pipe crosssection
downstream, suggesting that the breakdown and the reat-
tachment of the oncoming flow occur essentially simulta-
neously. Just as abruptly, however, the reattachment
“point’” would move back, «nly to return to its oniginal loca-
tion, resulting in an essentially periodic back and forth oscil-
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Some Studies of Non-Simple Pipe Flows

K R SREENIVASAN

2 MMARY A wartety of phenomena dcours Ln

aniform crosssection. This paper 1.l.s

in geometr,, namelv, the sudden expinsi.on
=Y

! INTRCOUCTION

Yipe tlows, far from being well-underszood
are very cumplex and highly interestin
asnexpected behaviours. Consider as an N
speed, constant temperature, adiabatic flow In 3
round pipe. The flow mav be Taminar v ¢ orneton

Dovks assert that, In a reglon suililient iy ooar aw
from the entrance, the stdtll pressure varics .1nv.
with the axial distance. Measurements, on the Jther
nand, show that for air flow in a iorg, strai
thin tube (say, 6 mm diameter, 4000 diami ters
Tanometers located at equal intervals alonz the pipe
length do not show equal readings; thew increase witn
increasing downstream distance. (For the specitic ex-
ample chosen, and for a turbulent tlow a4t a Revnclds
number of the order of 10,000, the manometer reading
over the last 100 diameters may be nearly twice as high
as that, say, between JOO and Q0 Jiamcters. )y lurtiier,
the wall shear stress is not simply proportional o the
pressure drop.

heoand

)

This seemingly puzzling observation is not hard to
understand, however. Without going into details (which
can be worked out rather simply), we may note that,
when the pipe is long and the axial pressure drop is
substantial, the absolute pressure at the pipe entrance
will have to be significantly higher than at the exit.
In the present example, the pressure difference vetween
the entrance and the exit will be of the order of one
atmosphere. This gives rise to a substantial change in
air density. With density a decreasing function of the
axial distance, the flow will have to accelerate con-
tinuously, thus accounting for the observed behaviours.
Thus, the classical notion of a linear pressure drop

in a long pipe is exact (for gases) only in the limit
of negligible pressure drop!

This is but one example of unsuspected behavicur. In
the remainder of this paper, we shall discuss some
intriguing phenomena arising from two simple changes

in pipe geometry, namely, Lhoe saudden expannion and the
coiling ot o circular pipe. We shall not dwell at ail
on the complexities associated with flow of non-Newton-
ian fluids.

2 SUDDENLY EXPANDING PIPES

Consider a sudden expansion in a circular pipe shown in
figure 1. Different phenomena occur in different ranges

K R Sreenivasan is with the Mason Laboratory,
Yale Umlversity, New Haven, Ct. 06520, U.S.A.
This paper was originally presented as one of
nine keynote addresses at the Eighth
Australasian Fluid Mechanics Conference held
at the University of Newcastle, NSW 2308,

28 November - 2 December 1983, (Paper M1227
received 8 November 19813).
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1D we stray away from straight circalar pipes of
<1ties arising from twc relativelv simp.e changes

o1 A Circular pipe.

cf parameter space, where the chief governing para-
meters are the Reynolds number Re, the axial distance
o and the conditions upstream o! the expansion. X
Revaoids numbers, unless specified otherwise, will

ere,

i
~e hased on the diameter D of the downsiream sectlon
ind the nulk average velocity there. The origin for the
downsiream distance will be at the expansion 1tsell.
all results in this secticn refer to a diameter ratio
sf 2. Lxceptions will be noted.

21 The Uscillatory Flow Regime

2.1a The Phenomenon: A hot wire located on the centre-
line of the pipe some distance downstream of the ex-
pansion will register, in a certain range of Re and

for suificiently smooth upstream conditions, oscilla-
tions of the type shown in figure 2, with amplitudes
typically comparable to the average velocity an the
downstream section. These oscillations arc remarkable
for their regularity and general repeatability {(provi-
ded some care is taken, see below).

d

flow
— ———— . . [).

Ly x

Figure 1 Schematic experimental configuration

Figure 2 Oscillations seen by a hot-wire located on
the pipe axis at x/D = 11, Re = 750, d = 0.635 cm, L,~
425 d. The uppermost trace is the unfiltered signal,
the mid-trace is low-pass filtered below 10 Hz, the
lowermost trace being high-pass filtered above 10 Hz.
Most of the fluctuations seen in the last trace are
below 500 Hz. Time scale: from left to right of figure,
5 sec.
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These oscillations have several interesting properties,
First, they appear when Re reaches a value of the order
of 750, with the upper Reynolds number limit depending
strongly on the degree of smoothness of the flow up-
stream of the expansion. If the entrance conditions to
the upstream pipe are sufficiently smooth - sav, in a
qualitative way, smooth enough for the laminir-turbulent
transition there to be delayed until an upst eam pipe
Reynolds number of the order of 7500 is reached - the
vscillatory phenomenon seen in figure 2 persists until

an Re of around 1500. For less smooth conditions, the
Reynolds number window shrinks, and the oscillations

mav diaappear altogether for certain conditicens. In fact,
1f small levels of disturbance are artificially created
just upstream of the expansion, or if the tube is
squeezed hard asymmetrically at the expansion, the osci-
llations are disturbed rather strongly. They can even

be controlled at will: for the conditions of figure 2,
inserting a 0.24 mm diameter needle along a diameter
through a hole carefully drilled just upstream of the
expansion destroys the oscillations completely; remov-
ing the needle and resealing the hole restores them
exactly. (The Reynolds number based on the maximum
velocity in the upstream section and the needle diameter
is approximately 50. The vortex shedding behind this
needle, which we did indeed observe, perhaps creates
enough asymmetry in the flow to prevent the cscillat-
ions from being formed. A slightly thinner needle, say,
of 0.17 mm diameter, does not affect the oscillations,
presumably because,its Reynolds number of 35 being low-
er than the critical value of about 40 (Kova.znay 1949y,
no vortex shedding appears.) Some further observations
on this flow can be found in Sreenivasan & Strykowsky
(1983a).

VaVaVvaVvave x/D = 5.8
VAVAVAVAREE
8
! 9
v
=
10

-

Figure 3 Develcpment and growth of s i)
pipe axis downstream of the expansi.: .
pass filtered to 19 Hz. Unfiltered sin-a.s 41
5.8 and 7 are no different from tre ‘. ocece
other x,;0, sSi4nais e .
frequency content. Time siaie o~ .
figure, < se..

Meingnicai f ngirerring Tignie o m1 vt

2.1b In search of an explanation: How do these osci-
llations arise and what physical phenomenon do they
represent? A partial answer can be seen from figure }
which records the development and growth of oscillatioens
along the pipe axis. [t :s 1mmediately clear that they
do not represent osclllations in mass flux ‘for, 1f
they Jdid, oscillatlions should have hbeen seen with
nearly equal intensity at all x;J) but, rather, mayv 3¢
representative of the instability developing downsirea

~¢ +*ha avmancinn.

For further clarification, we set up a simple flow
visualization experiment in water. An initial problen
was that any dye-introducing device placed upstream of
the expansion would produce enocugh disturbance to
destroy the flow oscillations. Heowever, a dye streak
introduced at the inlet to the ugstream pipe itself
(much as in the original experirents o! Reynclds,188)
served our purpose quite well. The laree area ratio of
the contracticn (2153) damped oot the disturbances
produced by the dye-injecting needie :
small values so as not to be disruptiv
that resulted in the oscillaticens in ¢t

o sufficient.y
e to the nrocess
he first place.

we may summarize our flow visuallization results as
follows. The dye streak downstream of the expansion
would remain straight and smooth for x/D of the order
of 5, apparently unaffected by the expansion. There-
after, depending on the precise value of the Revnolds
number (as lcng as it exceeded a 'critical' value of
about 750} it would develop rapidly growing oscillat-
ions {(see figure 4a and compare 1t with figure 3), and
would abruptly break dcwem at some point; when this
break-down occurred, the dye f:lled the entire

pipe crosssection downstream, suggesting that the
break-down and reattachment of the oncoming flow occur
essentlally simultaneously. Just as abruptly, however,

Figure 4 Flow visualization results for Re = =
(a), the break-down of the oncoming dye-stirear -.
downstream of the mark indicated bv the arrc., .
in (b), this break-down occurs u
In (¢), it is seen that the need
the expansion anchors the break-

Lream o e

[T 5 )

the reattachment wouid m oo 1 ioe
along the pipe, .niv ¢ ~l.0 1 .
position later. Tris o, -
essentiaL .y seriodn g,

a4t a luixed ctseriat. oo 4

TSULL 48 tte Tats

see an .ot .

Yo mt e .
e Tl . . .
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centre-line velocity in the smaller pipe, while the
lower level approximately to the average velocity that
would result if the flow coming out of the smaller pipe
filled the entire downstream pipe uniformly. Further,
it may be seen that (cf. the uppermost trace of figure
2) the upper velocity level is essentially laminar-
like, while the lower one is turbulent-looking, ref-
lecting the fact that the lower level in the oscillat-
ions of figure 2 represents a turbulent situation
downstream of reattachment.

Why does the reattachment point move back and forth so
regularly? The answer lies probably in the complex
interaction between the stability of the velocity
field downstream of the expansion and the oscillatory
pressure field further downstream. At this point, our
knowledge of the process is meagre, but a possible
(necessarily speculative) explanation follows.

The velocity distribution downstream of the expansion
would be nearly parabolic in the core, but surrounded by
a region of reverse flow. The resulting complex velo-
city distribution has several inflexion points, and is
obviously prone to instabilities which are quite possib-
ly excited in phase by the downstream pressure field,
thus providing the mechanism for the regularity of the
oscillations. These instabilities grow and eventually
lead to the break-down of the flow at some point down-
stream. When this occurs, the turbulence that develops
and the consequently increased pressure drop would shift
the reattachment point upstream. One may surmise that
this upstream shift of the reattachment point would
restore the stability of the flow by altering the velo-
city distribution just enough, so that the reattachment
point would now move downstream to its original posi-
tion. This self-perpetuating act repeats itsef imdefi-
nitely.

Inserting a small needle slightly upstream of the ex-
pansion (see figure 4c where the head of the needle can
be seen), which in the case of air experiments had the
effect of destroying the oscillations, always resulted
in a premature break-down and reattachment of the flow
at around x/D of 4. Disturbances due to the needle up-
stream, or any other artificially created disturbance,
would hasten the break-down by bypassing the normal
oscillatory growth stage, and anchor the so well the
reattachment point at around x/D =4 that, upstream of
this point, the flow would simply be a laminar 'jet'
of fluid coming from the upstream pipe — here, a hot-

SRRy /D - 24

e N e e e T
r—-—w 72

Figure 5 Oscillograms along the centre~line downstream
of the expansion. Re = 2200.
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wire on the pipe axis would continuously record very
nearly the peak velocity in the upstream pipe — whereas
downstream of this point, it would simply record com-
tinuously the lower velocity corresponding approximately
to that after reattachment. This is essentially why no
oscillations were seen by the hot-wire,

2.2 The Puff Region

Further downstream of the expansion, the smoothness or
otherwise of the flow in the upstream pipe becomes ir-
relevant, and the Reynolds number and the downstream
distance become the only relevant parameters. The down-
stream evolution of the flow for a fixed Reynolds num-
ber of 2200 is shown in figure S. The flow is fully
turbulent at x/D of 24, where the uppermost trace was
obtained. With increasing distance, the signal is seen
to build up in isolated regions while, at the same time,
the general level of turbulence slowly diminishes else-
where (see the middle two traces). Eventually, one has
(as in the lowest trace of figure 5) nearly perfect
laminar regions interspersed with characteristic
signatures of structures known as puffs (Wygnanski &
Champagne, 1973). Figure 6 preseats the complementary
information, namely, the flow evolution with increasing
Reynolds number at a fixed x/D of 144, Below an Re of

i -

(WYY
AL

Figure 6 Oscillograms on pipe center-line. x/D = 144
6000
Re
| FULLY TURBULENT
4000 REGIME
ng
2000k % PUFFS
P =
incipient
putts ? RELAMINARIZING
REGIME
0 ' '
0 100 200 300
x/a
Figure 7 Boundaries between the turbulent, puff and

relaminarizing regimes downstream of a sudden expansion.
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about 2000, the flow is entirely laminar; considering
that the expansion renders the flow downstream of it
turbulent irrespective of whether the oncoming flow is
turbulent or not, the above observation simply means
that the flow is completely relaminarized for Re S2000
(sea section 2.3). With increasing Reynolds numbers,
puffs begin to appear more and more frequently, until
eventually (for all practical purposes, beyond an Re of
2700) a fully turbulent flow results from the inter-
action and conglomeration of puffs.

By obtaining similar traces at different x/D, one can
construct a map marking boundaries between the turbu-
lent, puff and relaminarizing regimes (see figure 7).,
Similar maps have been constructed before for other
cases by Wygnanski & Champagne (1973) and Champagne &
Helland (1978). The map is self-explanatory in the
region x/D 2 100. In the region marked 'incipient
puffs?) one cannot see a distinct puff-like structure,
but can recognise something similar (see the second
trace from above in figure 5) which will evolve into
puffs further downstream. Turbulence level downstream
of the expansion seems always to decrease for a certain
initial distance; whether it continues to decay or not
depends on the Reynolds number. Crosses in the figure
indicate the x/D positions where the minimum in the
mean-square level of turbulence occurs for a given Re.
The line joining the crosses thus demarcates the region
of decaying turbulence to its left from that of in-
creasing and stable levels of turbulence to its righe.

It is known that puffs once formed may either merge
with each other or split to form more than one (Wygnan-
ski et al., 1975), depending on the Reynolds number. An
equilibrium puff is one that does neither, and sustains
itself indefinitely; it occurs around an Re of 2200. In
structure, an equilibrium puff consists probably of
several toroidal vortices (Rubin et al., 1980), and its
occurrence follows a Poisson distribution rather well.
Recently, Bandyopadhyay & Hussain (1983) seem to have
identified the regeneration mechanism that allows the
equilibrium puff to survive indefinitely in spite of
the continually occurring turbulent energy dissipation.
It appears that when the laminar flow from upstream of
a puff enters it — figures 5 and 6 show that the puffs
are relatively slow moving and have sharp upstream in-
terface — rather well-organized vorticity is generated
(much as in an axisymmetric jet) which breaks up into
small-scale turbulence subsequently. In the incipient
stage, one surmises that this same process of regene-
ration must gradually start to occur after being
initiated via statistical fluctuations.

2.3 Relaminarizing Regime

For Re § 2000, the measured mean velocity profiles
acquire increasingly laminar~like shape with increasing
downstream distance. One expects that for large x/D,
the theoretical Poiseuille flow will be established
asymptotically. At any station downstream of the cx-
pansion where the measured velocity distribution u(x,r)
— r being the radial distance from the centre-line —
has not quite reached its asymptotic shape, one can
write:

ul(x,r) = u,(r) + eu (x,r) + 0(e?),
v(x,r? = ev (x,r) + Oo(e?),
plx,r) = po(x) * Ep‘(x.t) + 0(e?), (1)
where uo(r) and p.(x) are the asymptotic velocity and
pressure diltributgonl. and ug,v and p . are the depart-
ures of the axial and normal vcl&city c&mponents. res-
pectively, and of the pressure, from the asymptotic
distributions. (Note: v, = 0.) We have retained only
€-order terms, which i-Sli.. that (1) can be expected
to hold only sufficiently far from the pipe expansion
vhere departures from the asymptotic state are small.
The parameter € is the inverse of the characteristic
Reynolds number based on the thickness of the inner

Mechonicel Engtneering Tvarsections, 1987
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laminar layer developing (in some asymptotic sense)
from the expansion itself, and the average velocity in
the pipe. It is these layers that grow and eventually
merge to form the asymptotic shape of the velocity
profile (Narasimha & Sreenivasan, 1979), the process
being much like that in the entrance region of a strai-
ght pipe (Goldstein, 1938).

For the fluctuations too, we may write:

(2)

u' = gu! +

1 0(g2); v'= cv; + 0(e?),

the expectation being that in the asymptotic state the
fluctuations are zero, We may now write the Reynolds
shear stress 1 as
T suvT o= e (@9 = e focen)], (3)
where c¢_ is the correlation coefficient, the tilde
denote root-mean-square values, and the last step in
(3) follows from (2). Measurements show that during re-
laminarization of this type, not only do the fluctuat-
ions decay with distance but also become decorrelated
(see, for example, Badrinarayanan, 1968); that is, ¢
tends to zero as x/D - = or € + 0. It is thus reasonable
to take c_ = o(1), so that, from (3), we may write
T = o(e?), (&)
or, that T is higher order in smallness than €2. Using
(1),(2) and (4) in the Reynolds averaged continuity and
momentum equations, we obtain, to 0(1):
d?u 1 du° dp
¢ = — -

r dr

o

o s uo(a) =0

dr? dx
whose solution, as expected, is the classical parabolic
distribution. To order €, we get:

-'-;—'-‘Tg—(n-g%l) -2 35 (n 3) )
where n =r?/a?, and £ = xa/Re; °u1dn = (. Putting
n(duy/an) = C exp(-2AE) ¢(n), we can write (5) as:

$" + A(1-n/n)¢ = 0, (6)

1 .
with ¢(0) = 0 and l ¢ dn = 0. Our interest is in the
first odd eigenfunétion and the corresponding eigen-
value for (6).

1.0

Uimax [ i}
W
01 -
1800

(1()’ 1 I 1 1 1

0 40 120
x/D

Figure 8 Exponential approach to the asymptotic
state., @,%,A: sudden expansion data from Sibulkin
(1962); D/d = 4.5. O, gradual expansion, Laufer (1962).
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There are some nice consequences of this analysis.
First, a characteristic value of u,, say u which

is the centre-line value of u,, should deca?agxponent-
ially with x. Figure 8 shows lhis to be true to a good
approximation. Interestingly, the exponential decay
which, by virtue of having retained only two terms in
(1), could a priori have been expected to hold only for
large x/D, holds true quite close to the expansion, esp-
ecially for low Reynolds numbers. Second, the rate at
which u decays is inversely proportional to the
Reynolds number. (That is, if u ~ exp (-mx/a), the
product mRe should be a constanlmfﬁdependent of Re.)
Figure 9 shows that this is true not only for the sudden
expansion case but also for gradual expansions and
bifurcating pipes. Finally, figure 10 shows that the ex-

perimentally determined distribution of u1/u agrees

quite closely with the approximate eigenfuncngﬁ for (6).

Again, the theory holds for x/D as low as 8.
3 FLOW IN HELICALLY COILED PIPES

Flow in curved pipes — which encompasses the topic under
discussion— has been a subject of numerous investigat-
ions, but it appears that even some of the gross pheno-
mena have not been understood. Our intention here is not
to discuss curved pipe flows exhaustively — a recent
survey by Berger et al.(1983) does this very well -

hut to point out a few interesting results.

40

mRe Y v
20 e -

10 L
0 1000 2000

Re

Figure 9 The product mRe in relaminarizing pipe flows.
Sudden expansion: @, Sibulkin, A, present. @, gradual
expansion, Laufer. ¥, branching pipe, Lynn & Sreeniva-
san (1982).

1.0

uy - 1-4(rla)Ye3(r/a)4

_10 A | A |

r/la

Figure 10 A comparison with theory of the departure of
the measured distribution from the asymptotic parabolic
profile. Sibulkin: O, x/D = 8; A4,17;Q,35. Present: O,
x/D = 17.5.
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Consider a long straight section of a smooth pipe follow-
ed by a coiled section; following the coil is another
long straight section (see figure 11). Several phenomena
we want to discuss are related to the question of tran-
sitional Reynolds numbers in this set-up, and we shall
mention this first.

Since we made no special attempt to keep the flow in
upstream straight section unusually disturbance-free,
the onset of transition occurred there at a Reynolds
number of about 2300, Typically, this manifests itself
in the form of puffs, and transition proceeds with in-
creasing Reynolds numbers much as in figure 6. As deter-
mined from intermictency measurements, transition '

to turbulence is complete around an Re of 3200. This
holds up to the entrance to the coil. Once inside the
coil, the nature of transition depends, even at a fixed
axial distance and for a given radius ratio (that is,
the ratio of the radius of the pipe to the radius of
curvature of the coil), strongly on the precise locat-
ion in the pipe. It is not easy to determine, or even
define convincingly, the onset of transition to turbu-
lence (although a preliminary attempt has been made by
Sreenivasan & Strykowsky, 1983b), but two limiting
situations can be defined relatively unambiguously: the
upper Reynolds number limit for the existence of a ste-
ady laminar flow ('steady laminar limit') and the lower
Reynolds number limit at which the flow is turbuleat
everywhere in a given crosssection of the curved pipe
('turbulent limit'). Notice that in the special case
of the straight pipe the steady laminar limit coincides
with the onset of transition to turbulence; of course,
the turbulent limit retains its meaning throughout

of the completion of transition to turbulence.

Figure 12 shows both steady laminar and turbulent limits
for the set-up shown in figure 11, (The data correspond
to a pipe which was 173 diameters long upstream of the
¢coil, had 20 1/, turns in the coil and was 937 diameters
long in the downstream straight section. The diameter

2a was 0.635 cm, and the radius ratio a/R was 0.058.

The fluid was air. All transitional Reynolds number

data were determired with a hot-wire.) One =ffect of

the coil is to increase both the steady laminar and
turbulent limits up to the end of about three turns or
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Figure 11 Schematic of the experimental set-up.
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Figure 12 The steady laminar and turbulent Reynolds
nusber limits for the set-up shown in figure 11.
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so; thereafter, some asymptotic state seems to have
been reached. In this asymptotic state, the flow re-
mains laminar and steady for Reynolds numbers up to
about 4800, and does not become fully turbulent untii
an Re of 7900 or so is reached; clearly, the gap bet-
ween the two curves is larger inside the coil than that
at the entrance to the coil. Perhaps surprizing is the
behaviour downstream of the coil: while the turbulent
limit drops as expected, the steady laminar limit does
not, but stays approximately at the same elevated level
as in the coiled section. In other words, the onset of
turbulence has been permanently raised to an Re of

4800 in contrast to about 2300 in the upstream section!

Why does the flow remain steady and laminar for higher
Reynolds numbers in the coiled section than it usually
does in the upstream straight section? Can the asymp-
totic values of the two limiting Reynolds numbers be
increased indefinitely? What makes the flow remain
steady and laminar for Reynolds numbers as high as it
does in the downstream straight section? Can that too
be increased indefinitely? These are some of the obvi-
ous questions that come to our mind. In what follows,
we shall. attempt at least partial answers to these
questions drawing largely from our continuing study of
this flow.

3.1 Stabilization Effects and Relaminarization

Within the coil, the flow near the inside wall sees a
convex curvature whose effect has long been known to be

stabilizing. However, the concave curvature associated
with the outside wall is known to be destabilizing, and
so, the explanation for the net stabilization effect
observed in the present circumstances is a bit subtle.
The clue lies in the behaviour of the mean velocity
distribution. Essentially because of the centrifugal
forces, the peak of the velocity in the plane of the
helix moves to the outside; typically for a radius ratio
of about 0.058, the peak occurs at a distance from the
outer wall of a tenth of the pipe diameter. Over the
bulk of the profile from the inside to the peak, the
sense of the mean flow vorticity is the same as the
‘angular velocity’in the pipe, so that, by Rayleigh's
criterion — for a statement of the criterion most
appropriate in the present context, see Coles (1965) ~
the flow is stable. There is however a small region
near the outside wall where the mean vorticity and the
'angular velocity' vectors are oppositely aligned. But
this region is quite thin for fairly large curvatures,
and the governing instability there is of the boundary
layer type. This 'boundary layer' too will be stable
unless the Reynolds number based on its thickness is
above the appropriate critical value; then and only
then will the onset of instability and possible tran-
sition to turbulence occur. This explanation, in spirit
due essentially to Lighthill (1970), cannot be complete
because of the three-dimensionality of the velocity
field but appears very reasonable.

Une consequence of these stabilication ellects is that,
in a certain Reynolds number range (for the conditions
of figure 12, 2300 S Re S 4800), a turbulent flow enter-
ing the coil can be expected to become laminar at some
point in the coil. That does indeed happen, as can be
seen from the oscillograms of figure 13. The flow,which
begins its inurney in a fully turbulent state at the
inlet to tae coil, has become completely laminar by
about two turns in the coil. In fact, near the inside
surface, the flow has lost most of its turbulent
characteristics only half a turn into the coil!

’

3.2 Radius Ratio and Other Effects

We set up several coiled pipe flows in order to deter-
mine the effect of radius ratio on the asymptotic values
of the steady laminar and turbulent limits discussed
vith respect to figure 12. Since the parameter govern-
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Figure 13 Typical oscillograms of hot-wire traces
during relaminarization. Re = 3450, 3a/R = 0.058, The
numbers marked in the middle of the figure correspond
to the number of turns into the coil.
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Figure 14 Asymptotic values of the limiting Dean
numbers in the coiled section, measured at the end of
20 turns for all ‘radius ratios.

ing the dynamic similarity in curved pipes is the so-
called Dean number (White, 1929),

De = Re(a/R)°"°, ()

the data obtained were plotted (see figure 14) as the
Vimiting Dean mmbers  apninut the radine ratio a/R, [t
i soelt that the Jiwstang Loesn numbers (whose meaning
is the same as that of the asymptotic limiting Reynclds
numbers of figure 12) increase with increasing tightness
of the coil until an a/R of 0.04. Thereafter, we note
that steady laminar flow cannot be found for Dean num-
bers above about 1100, however large the radius ratio.
(This constancy in the steady laminar limit for the
Dean number actually implies a decrease in the corres-
ponding Reynolds number for increasingly larger a/R;
see equation (7).) On the other hand, the turbulent
limit appears to increase monotonically (in terms of
both the Dean and Reynolds numbers) with the radius
ratio.

1f we replot the data of figure 14 in terms of Reynolds
numbers instead of Dean numbers (Srecnivasan & Stry-
kowski, 1983b), it can be seen that the lower curve of
figure 14 shows a peak for a/R of 0.039 and Re of 5400.
This simply means that the most stable conditions
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obtain fotr & radius ratio of 0.039 and the highest
Reynolds number for which 8 steady 1aminat flow is
possible in the aaymptotic state in the coiled pipes is
5400. This appears to be 80 independent of how large
the critical Reynolds auaber 8 upscrea® of the coil
(or, ho¥ smooth the inlet is tO ¢he upstred® straight
pipe)s our data at chis point are not extensive but
seen enough t° hold this viev. Ve therefore conclude
that, if we can maintain the flow upstrea® of the coil

seems € have beed guled out in the long history of
curved pipe flows! Curvature in this case ie not al-
ways :cabixi:ing!

3.3 Unsteady Laminar Flow in Tightly Coiled pipes’?

For convenience, we shall call coiled pipes vith a/R
nighet thaa about 0.04 (cortesponding ro the flat low~
er curve in figure 14) as tightly coiled pipes. e
shall nev qualitative\y examine the nature of the flow
with incteasing Dean numbet for & typical cightly
coiled pipe. Figure 15 shovs several oscil\og:am‘. all
obtained 3t the end of 10 turns of 3 coiled pire with
radius ratio 0.1. 1t is useful te pote that the traces
1ook much the game over most of the ctos:section of
the pipe, except perhaps in the vicinity of the outside
wall in the plane of the coil. It is clear that, while
the flo¥ loses its sready chacacteristics in the neigh~
nourhood of a De of 1100, it is still \lminat-lcoking

and the fourth craces in figure 19) . We therefore make
a hYPOt“G!il that the stable laminar state® yields to

1f an intermediate unsteady 1aminar srate Hoes jndeed

occuls it is clear that cheotecicnl analyses of the

Laminar motion must somehow jacorporaté® this 3t large

pean numbers- This gailing ©aY well be the chief reaton
e's

ors are jower that the expcrimentnl\y measured ones,
as should indeed be expected if the present ditcus;ion
is correct.

3.4 The Downstredd straight gection

1075
We may nov return priefly te@ rne ilovw ‘a the straight
section downstrean of the coil. We recall from figur
12 that the Reynolds numbet corrnspondins to the stesdy

pe Lrue (Sreenivasan 3 Strykowsky 1983b) for coils with Figure '3 Oacilloprams of hot-wire signals, a/R = 0.1,

several other radivs ratios oo this seemed gurprizing The gain foF the top fouf traces i the same, but it

at first, but {s natural upot recoliecting that the increases oY 2 each time for the following ¥ traces.
critical Reynolds aumber for 2 pipe glow (i.e.y the The time scale is the sase for all traces:

Poiseuil\e flow), a8 dctar-incd h otct\cally from

11neat dinturbance theory. is |trictly infinite. in without careful and qu.nti:ative studied, put it B8Y
practice, the flo¥ undergoss cransition at finite and pe relevant to point out that a® artificisl distur®d”
variable lcyaa\dl numbers dcpcndin; on the 1evel of ance, created i-ncdiately after the flovw exits fro® the
disturbances. Becauss of the continu:l di:sipntion o coil by inserting & fins needle actoss the pipe die~
turbulenc® and othet dilturbanccs in the thin boundary metef (recall the srrangement in sectio? 2.1), does
layer-)ike regiontd, it is po-sib\c that the coiled not affect the trlnlition.l peynolds aumber in the
gection sct® like » very successtul tilter that removes downstress straight gection. On the othet hand, the
the wost criticsl disturbauces. ot 8t least diminishes sane needle, whan inssrted further Jownstress (saY,
theit llplitud.. sltets cheir frequency content, ©F x/D of 100, results in @ prccipitou- drop in the
poth, in such 3 v&Y that tha rensaindert of the disturd” staady 1aminar 1imit to sround 2300,

ances does not becoms criticsl uatil after 8 gairly

high Reynolds nusbet (depending o the radiue ratio Finally, ve =&Y aote that the gap betves® the lo8%

of the coile fumber of turns, © ) s attained. The steady la® aar motiod and the & jetion of rransition
picture e WOT licated dY the fact that there to turbulence i elatively quite f the ordet
is a stronk suirl 2t the inlet to the downstress of 0.51 of the stesdy 1aminat limit) in the downetreem
scraight sect on, and the poundary layers that get steaight section. This catastrophic transitions not
cs:ablt;hcd in the developing region 98Y in fact set uncosmon iR pipes with celativel? smooth inlets ~ the
the uppe’ 1imit tO the ttanoitton;\ Reynolds aumbet coil seems tO serve such the same pucpose indirect\y -
theve. These and other questions cannot b settled is gquite aitterent fro® that charnctoritt&c of the
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Figure 16 Transitional Reynolds numbers in a 'heat-
exchanger-type' pipe configuration shown in the inset,

process in the upstream straight section with no
specially smooth inlet, and is marked by the appear-
ance of the so-called slugs (in contrast to puffs up-
stream) which are regions of turbulence filling the
entire pipe section comparable in length to the pipe
length itself, characterized by relatively sharp lami-
nar-turbulent interfaces at both the front and back
ends. (For a discussion of slugs, see, for example,
Pantulu(1962), Lindgren (1969), Wygnanski & Champagne
(1973), etc.)

4 SOME OTHER EXAMPLES

In addition to the two non-simple pipe flows discussed
in the previous sections, we have also examined in
varying degrees of detail:

(a) pipe flow with a right angle bend,

(b) pipe flows which bifurcate into two equal
or unequal branches, and

(c) typical heat exchanger pipes in which the
flow reverses direction every half a turn: see inset
to figure 16.

In engineering practice, these and other configurations
are widely used, Several important gross parameters
have been measured for a long time, and a number of
wvorking engineering correlations relating to their
performance have been in existence also for a long
time. But & more detailed look at sny of these confi-
gurations reveals many interesting and unexplored
facets. (Sce, for cxamplo, Tunstall & Harvey (1969)
for a very curious phenomenon associated with sharp
bends in fully developed pipe flows.) Perhapa. we are
soying nothing but alivsting Lo the obvious reality ol
the fascinating science of fluids!

We close our discussion of non-simple pipe flows with
some data on the transitional Reynolds numbers measur-
ed in an example of (c) above. Again, we have plotted

in figure 16 the two limiting Reynolds numbers (recasll
our discussion with respect te figar® 12) as s function
of powitfsmy 18 {» seem CRat the o limiting Reynolds
numbers first increase for the first half a turn or so,
just as they do in the coiled pipes, but thereafter,
follow the geometry of the pipe in some rough sense. The
important point to note is that the onset and completion
of transition occur around the same values common in
steaight pipes with disturbed inlet conditions. Clearly,
this fact is important in heat exchangers and the like
where it is no surprise to find this configuration,
rather than a helicslly coiled pipe, in common use.
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. On the scaling of the turbulence energy dissipation rate
K. R. Sreenivasan
M Mason Laboratory, Yale University, New Haven, Connecticut 06520
; {Received 29 November 1983; accepted 23 February 1984)

From an examination of all data to date on the dissipation of turbulent energy in grid turbulence,
. it is concluded that, for square-mesh configuration, the ratio of the time scale characteristic of
dissipation rate to that characteristic of energy-containing eddies is a constant independent of
Reynolds number, for microscale Reynolds numbers in excess of about 50. Insufficient data
available for other grid configurations suggest a possibility that the ratio could assume different
numerical values for different configurations. This persistent effect of initial conditions on the
time scale ratio is further illustrated by reference to the jet-grid data of Gad-el-Hak and Corrsin.

LA

It has long been believed, essentially on dimensional  cept where the effects of viscosity are directly felt, such as
grounds, that the time scale of the energy dissipation rate € in near a smooth wall). Probably the only direct attempt to test
fully turbulent lows is of the same order of magnitude as the this notion against experiments has been that due to Batche-
characteristic time scale of the energy containing eddies (ex-  lor,' who plotted the quantity eL,/u" (where L, is the longi-

>
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FIG. 1. The quantity eL,/u’ for biplane square-mesh grids. Al data except
+ are for the initial period of delay, and are explained in Table I. + indi-
cate typical data'® in the final period of decay. — corresponds to Eq. (1).

tudinal integral scale, and u is the root-mean-square longitu-
dinal velocity fluctuation) against the distance from the grid.
He concluded that, in the so-called initial period of decay,
the data are not generally inconsistent with the above expec-
tation. {Here, u*/e can be regarded as the time scale of dissi-
pation, and L,/u as that characteristic of large eddies. While
this latter quantity is not directly related to the time scale of
the energy-containing eddies, the difference is not sufficient-
ly significant to mask a real trend if it exists.) However, the
relatively large scatter in the data collected by Batchelor
permits one to speculate a weak Reynolds number depen-
dence at least in the relatively narrow range covered
(14.4<R, <41, where R is the microscale Reynolds number
based on u, the Taylor microscale 4, and kinematic viscosity
v). For example, Saffman? has pointed out that a logarithmic
or — } power dependence of €L /u” on R, is not necessarily
inconsistent with the data. The point at issue is important,
and is indeed one of the few key elements of a *‘semirational
turbulence theory,” and so, it seems desirable to examine the
question in the light of much more recent data that have
become available, extending over a wide Reynolds number
range and a variety of conditions. This is the main purpose of
this letter. We confine ourselves to data in grid turbulence
{although we have examined shear flows also) {see Table I).
With one exception (which will be noted), only those experi-
ments in which L, was either explicitly supplied by the auth-
ors, 2 or could be evaluated by us via their measured corre-
lation function of spectral density, have been considered.

For consistency, we define € = — § Uyldu?/dx), with
U, as the mean velocity in the test-section, even when, occa-
sionally, one or both of the remaining two fluctuation com-
ponents were measured; du?/dx was evaluated from the best
power fit possible for the u* data in the initial period of de-
cay. (On those occasions where the authors gave a ready
number for €, we have always cross-checked it with the origi-
nal data.)

Figure 1 shows all the data for biplane, square-mesh
grids. Itis clear that €L ,/u" is sensibly independent of R, for
R, R S0although, for lower R, , there seems to be a recogniz-
able trend.
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That €L,/u" could depend on R, for small R, is not
surprising, considering that the constancy of €L,/u" is only
an asymptotic expectation. In particular, at very low Reyn-
olds numbers where the inertia forces are weak, such as in
the final period of decay, it is easily shown that

€L /u = (w/2)""*(15/R,), (1)

if we recall the relation € = 15vu°/4 ° and the result’ that
L,/A =(m/2)'"?. Typical experimental data from Bennett
and Corrsin,'* shown in Fig. 1, deviate from Eq. (1) because
the measured values of L,/4 are higher than (7/2)''* and
increase weakly as the Reynolds number decreases.

It is pertinent here to make reference to Rotta’s'® work.
Rotta assumed that the spectral energy transfer occurs ac-
cording to Heisenberg's theory,'® and further that the so-
called Loitsianskii invariant (see, for example, Ref. 1, p. 92)
exists and is numerically equal to 4. With these assumptions
he calculated that €L /u'—0.76 as R, — . (The corre-
sponding value from Fig. 1 is around 1.) He also smoothly
interpolated between this high Reynolds number solution
and the low Reynolds number solution given by Eq. (1). The
interpolated curve shows a behavior qualitatively not unlike
that of the data in Fig. 1. However, because of the various
dubious assumptions involved in the calculations, and also
because of the numerical disparity in the high Reynolds
number limit mentioned earlier, it was thought unnecessary
to reproduce Rotta’s interpolation curve.

While the situation appears quite satisfactory with re-
spect to square-mesh grids, it is not so clear for other types of
grids. For example, the quantity €L ,/u’ for the flow behind
an array of parallel rods,'™'” plotted in Fig. 2, shows a con-
siderable scatter and, more importantly, is higher on the
average (assuming that the average is meaningful) than the
corresponding square-mesh value. (It may be argued that the
turbulence behind an array of parallel rods may not have
attained homogeneity and isotropy to the same degree of
approximation as in the case of square-mesh grids. We may,

14

30 T ¥ L
+
€L, /3] + 4
f 4
[+] +
20 + A
+
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- [ ] 4
1.0 I i 1
10 50 100
Y

FI1G. 2. €L, /u" for grids of parallel rods and a slats grid. Parallel rods: A,
M=254cm o=037 x/M=60(Ref. 16); + , M =102cm, o =0.37,
30<x/Mc70 (Ref. 17), OM =254 cm, 0 =031, ® M=254 cm;
o = 0.37. The last two are at x/M = 50 from Ref. 18. 0, slats grid, M = 1.9
cm, o = 0.21, x/M = 47 from Ref. 16.
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FIG. 3. €L, /4 for jet-grids of Ref. 17. O at zero injection rate is an average of
10 data points (99< R, < 130). Both © and ® at injection rates of 7.32% are
averages of six points each. R, = 110 for © and 150 for @.

however, note that in the region of measurement in Ref. 17,
simple measures of homogeneity, such as the uniformity of
mean velocity distribution in the *core region” of the wind
tunnel and of isotropy such as the ratios of the root-mean-

TABLE 1. Guide to the biplane grid data of Fig. 1.

Source Gnd type x/M Symbol

Corrsin' Biplane, round rods d
M =127cm, 2.54 cm 34-230
o =044

Batchelor and Townsend* Biplane, round rods A
o =03 M=0.635, 20-180
1.27 and 2.54 cm

Baines and Peterson® Biplane, square rods —
M=338cm,0=044" 27-64

Mills ez al.” Biplane, round rods o
M=254cm, 0=04 17-65

Kistler and Vrebalovich*  Biplane, square rods, ©
M=1715cm,0=034 45

Comte-Bellot and Biplane, square rods o

Corrsin® M = 2.54 and 5.08 cm 42-385
=034

Lin and Lin'® 55 \val

Yeh and Van Atta'! Biplane, round rods 23-48 X

M=4cm,0=0.36

Biplane, round rods [ ]
M=254cm, 0 =044 12-102

Sreenivasan ef al."?
(only typical data
presented)

* The symbol /\ actually represents the mean of several sets of data whose
range is indicated in Fig. 1 by a vertical bar in each case. At R, = 144
there are 9 setsof data, 15at R, = 20.3,9at R, = 284,and 3at R, = 41.

*Baines and Peterson’s data cover seven biplane grids. Three grids have
solidity of 0.61, 0.75, and 0.89, and are likely to have produced unstable
flow downstream.® In two other cases (M = 30.5 cm and 20.3 cm), mea-
surements did not proceed beyond x/M of about 12.5. In the seventh case,
which alone could be considered here, €L,/ ranges from 1.29 to 1.86;
unfortunately, the corresponding Reynolds numbers are unknown, pre-
venting us from plotting the data in Fig. 1.

Lin and Lin’s grid is unconventional in that it is a complex structure of
heated elements repeatedly folded into compact flow channels, which
themselves are arranged in a square-mesh fasion. Its exclusion from Fig. |
does not at all affect the conclusions.
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square intensities in different directions, were found to be
rather typicul.) Also plotted in Fig. 2 is a point for a slats grid
{looking like an open Venetian blind) from Ref. 16. In Fig. 2,
the length scale L, for Gad-¢l-Hak and Corrsin’s'” measure-
ments was obtained from the authors’ tables, while for the
Stewart and Townsend data'® it was computed by the area
L, under transverse correlation curves and the assumption
that L, = 2L_. (The vertical bar corresponds to the extremes
on L, depending upon which of the transverse correlation
functions was used for integration.) Harris'* did not measure
L, and this is the exception mentioned earlier. For the typi-
cal data of Harris we have used, L,/M was taken from Ref.
17 with the hope that the essentially similar configuration,
grid solidity, and experimental conditions justify this step.

The data of Figs. 1 and 2 allow us to speculate that
€L ,/u’ may take on different values for different grid config-
urations. (Unfortunately, the perforated disc data of neither
Ref. 5 nor Ref. 19 could be included because L, is not avail-
able.) Investigators who compare theories of isotropic turbu-
lence with grid turbulence data often implicitly assume that
the turbulence sufficiently far behind a grid attains a charac-
ter independent of the configuration of the grid. It does not
quite appear justified, presumably because the scales of tur-
bulence strongly affected by grid geometry contain a signifi-
cant fraction of energy. This dependence on initial condi-
tions can be seen more directly by examining the data of
Gad-el-Hak and Corrsin,'” who used an array of parallel
rods, in combination with several jets of fluid (coflowing as
well as counterflowing) evenly distributed along each rod, to
produce nearly homogeneous and isotropic turbulence. Fig-
ure 3 shows that €L, /u" in the downstream region correlates
reasonably well with the injection rate of the jets. It is worth
noting that for large injection rates, €L, /u’ seems to ap-
proach a value appropriate to square-mesh grid. This seems
quite reasonable physically because the grid is essentially a
parallel-rod type for small jet speeds, but becomes more
square-mesh type at high jet speeds.

Ifit is true that the effects of grid geometry do persist, it
is legitimate to ask why there does not seem to be any notice-
able difference (see Fig. 1 and Table I) between square-mesh
grids of round rods and square-mesh grids of square rods.
One would also like to know, for instance, whether there are
noticeable differences in €L ,/u* between single plane grids of
square rods and single plane grids of round rods. We suspect
that the asymptotic character of two grid flows will not be
*“noticeably™ different if the grid configurations are *“‘suffi-
ciently” close, and that, even in square-mesh grids, if one
changes the grid solidity o by a large amount, the flow char-
acteristics will change significantly. We note (with some sur-
prise) that a large body of literature on turbulence behind
square-mesh grids is confined to grids of solidity not very
different from 0.4 (see Table I).
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